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1. Introduction

The inverse scattering transform method plays a significant role during the discovery process of the exact
solutions of completely integrable systems [1,2]. As a new version of inverse scattering transform method,
the Riemann–Hilbert (RH) approach has become the preferred research technique to the researchers in
investigating the soliton solutions and the long-time asymptotics of integrable systems in recent years
[3,4]. More recently, the RH approach has been widely used to investigate the integrable systems with
nonzero boundary [5–10]. The high-order soliton solutions which have the same velocity and locate at the
same position also have been studied [11–13]. The general method to obtain the high-order solitons with
the classical inverse scattering transform (IST) method involves some complicated calculation, especially
for the case of multiple high-order poles [14–16]. In this case, it is effective to construct high-order pole
soliton solutions of integrable systems by Laurent expansion to the RH problem [16–18].

It is well-known that the nonlinear Schrödinger (NLS) equation [19,20]

iqt + qxx + 2|q|2q = 0 (1.1)

is one of the most important integrable systems, which plays an important role and has applications
in a wide variety of fields. Besides the NLS equation (1.1), derivative NLS (DNLS) equations were also
introduced to investigate the effects of high-order perturbations [21–23]. Among them, there are three
derivative NLS equations [23], the first one is Kaup–Newell equation [24]

iqt + qxx + i(|q|2)x = 0. (1.2)

The second type is the Chen–Lee–Liu equation [25]

iqt + qxx + i|q|2qx = 0. (1.3)

The third type is the Gerdjikov–Ivanov (GI) equation which takes the form [26]

iqt + qxx − iq2q∗
x +

1
2
q3q∗2 = 0, (1.4)

where the asterisk ∗ means the complex conjugation. The DNLS equations are regarded as models in
a wide variety of fields such as weakly nonlinear dispersive water waves, nonlinear optical fibers, quan-
tum field theory and plasmas [27–30]. In plasma physics, the GI equation (1.4) is a model for Alfvén
waves propagating parallel to the ambient magnetic field, where q being the transverse magnetic field
perturbation and x and t being space and time coordinates, respectively [31,32]. The GI equation has
been studied through many methods. For instance, the Darboux transformation [33], the nonlinearization
[34,35], the similarity reduction, the bifurcation theory and others [36,37]. Especially, RH method is used
to construct N-soliton of the GI equation with zero boundary [38]. Recently, we used the RH method to
construct simple pole solutions of the GI equation with nonzero boundary conditions [39].

In this article, we further investigate the inverse scattering transform and high-order solutions of GI
equation (1.4) with zero boundary condition

q(x, t) → 0, x → ±∞, (1.5)

and the following nonzero boundary conditions

q(x, t) ∼ q±e− 3
2 iq4

0t+iq2
0x, x → ±∞, (1.6)

where |q±| = q0 > 0, and q± are independent of x, t. The formula of multiple soliton solutions of the GI
equation is obtained, which correspond to multiple high-order poles of the RH problem.

This paper is organized as follows. In Sect. 2, we construct the RH problem of GI equation (1.4) with
zero boundary condition and display the relationship between the solutions of the RH problem and GI
equation, then we derive the formula of single high-order solutions and multiple high-order solutions of GI
equation. In Sect. 3, by the same method, we give the one single high-order soliton solution and multiple
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high-order soliton solutions of GI equation (1.4) with nonzero boundary condition. We give the patterns
for both zero and nonzero boundary conditions.

2. IST with zero boundary and high-order pole

2.1. Spectral analysis

2.1.1. Eigenfunctions and scattering matrix. It is well-known that the GI equation (1.4) admits the Lax
pair [33]

ψx = Xψ, ψt = Tψ, (2.1)

where

X = −ik2σ3 + kQ − i

2
Q2σ3, (2.2)

T = −2ik4σ3 + 2k3Q − ik2Q2σ3 − ikQxσ3 +
1
2
(QxQ − QQx) +

i

4
Q4σ3, (2.3)

and

σ3 =
(

1 0
0 −1

)
, Q =

(
0 q

−q∗ 0

)
. (2.4)

With zero boundary (1.5), asymptotic spectra problem of the Lax pair (2.1) becomes

ψx = X±ψ, ψt = T±ψ, (2.5)

where

X± = −ik2σ3, T± = −2ik3σ3. (2.6)

We define the Jost eigenfunctions φ±(x, t, k) as the simultaneous solutions of both parts of the Lax pair,
so that

φ(x, t, k) = ψ(x, t, k)eiθ(k)σ3 , (2.7)

where θ(k) = k2(x + 2k2t), then

φ±(x, t, k) → I, x → ±∞. (2.8)

Meanwhile, φ± acquire the equivalent Lax pair

φx(x, t, k) + ik2[σ3, φ(x, t, k)] = ΔX±φ(x, t, k); (2.9a)
φt(x, t, k) + 2ik4[σ3, φ(x, t, k)] = ΔT±φ(x, t, k), (2.9b)

where ΔX± = X − X± and ΔT± = T − T±.
Since ψ±(x, t, k) are two fundamental matrix solutions, there exists a constant matrix S(k) such that

ψ+(x, t, k) = ψ−(x, t, k)S(k), (2.10)

where S(k) = (sij(k))2×2 is referred to the scattering matrix and its entries as the scattering coefficients.
It follows from (2.10) that sij has the Wronskian representation:

s11(k) = Wr(ψ+,1, ψ−,2), s12(k) = Wr(ψ+,2, ψ−,2), (2.11a)
s21(k) = Wr(ψ−,1, ψ+,1), s22(k) = Wr(ψ−,1, ψ+,2). (2.11b)
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2.1.2. Analyticity. As a result, the Volterra integral equations are

φ±(x, t, k) = I +

x∫
±∞

e−ik2(x−y)σ3ΔX±φ±(y, t, k)eik2(x−y)σ3dy. (2.12)

We define D+, D− and Σ as

D+ := {k ∈ C : RekImk > 0}, D− := {k ∈ C : RekImk < 0}, Σ := R ∪ iR. (2.13)

Proposition 1. Suppose that q(x, t) ∈ L1(R) and φ±,j(x, t, k) denotes the jth column of φ±(x, t, k), then
φ±(x, t, k) have the following properties:

• φ−,1,φ+,2 and s22 are analytic in D+ and continuous in D+ ∪ Σ.
• φ+,1, φ−,2 and s11 are analytic in D− and continuous in D− ∪ Σ.
• s12 and s21 are continuous on Σ.

As usual, the reflection coefficients r(k) are defined as

r(k) =
s12(k)
s22(k)

, r̃(k) =
s21(k)
s11(k)

, k ∈ Σ. (2.14)

2.1.3. Symmetries.

Proposition 2. The Jost solution, scattering matrix and reflection coefficients satisfy the following reduc-
tion conditions

• The first symmetry reduction

φ±(x, t, k) = σ2φ
∗
±(x, t, k∗)σ2, S(k) = σ2S(k∗)∗σ2, r(k) = −r̃(k∗)∗, (2.15)

• The second symmetry reduction

φ±(x, t, k) = σ1φ
∗
±(x, t,−k∗)σ1, S(k) = σ1S(−k∗)∗σ1, r(k) = r̃(−k∗)∗, (2.16)

where

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
. (2.17)

2.1.4. Asymptotic behaviors. To solve the RH problem in the next section, it is necessary to discuss the
asymptotic behaviors of the modified Jost solutions and scattering matrix as k → ∞ by the standard
Wentzel–Kramers–Brillouin (WKB) expansions.

Proposition 3. The asymptotic behaviors for the modified Jost solutions and scattering matrix are given
as

φ±(x, t, k) = I − i

2k
σ3Q + o(k−1), S(k) = I + o(k−1), k → ∞ (2.18)

Furthermore, solutions of the GI equation will be constructed by

q(x, t) = lim
k→∞

2i(kφ±)12. (2.19)
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2.2. Riemann–Hilbert problem

As we all know, the equation (2.10) is the beginning of the formulation of the inverse problem. We
always regard it as a relation between eigenfunctions analytic in D+ and those analytic in D−. Thus, it
is necessary for us to introduce the following RH problem.

Proposition 4. Define the sectionally meromorphic matrix

M(x, t, k) =

{
M− =

(
φ+,1

s11
φ−,2

)
, as k ∈ D−,

M+ =
(

φ−,1
φ+,2

s22

)
, as k ∈ D+.

(2.20)

Then a multiplicative matrix RH problem is proposed:

• Analyticity: M(x, t, k) is analytic in C \ Σ.
• Jump condition

M−(x, t, k) = M+(x, t, k)(I − G(x, t, k)), k ∈ Σ, (2.21)

where

G(x, t, k) =
(

r(k)r̃(k) e2iθ r̃(k)
−e−2iθr(k) 0

)
. (2.22)

• Asymptotic behaviors

M(x, t, k) ∼ I + O(k−1), k → ∞, (2.23)

Moreover, new solutions of the GI equation can be reconstructed by M(x, t, k) as

q(x, t) = lim
k→∞

2i(kM)12. (2.24)

2.3. Single high-order pole solutions

We assume s22(k) have high-order poles {±kj : Re kj > 0}N
j=1, from the symmetries (2.15) and (2.16),

we know that {±k∗
j : Im k∗

j < 0}N
j=1 are high-order poles of s11(k). So s22(k) can be expanded as:

s22(k) = (k2 − k2
1)

n1(k2 − k2
2)

n2 · · · (k2 − kN )nN s0(k), (2.25)

where s0(k) �= 0 for all k ∈ D+. When s22(k) only has N simple zeros, the RHP can be solved straight-
forward by the residue conditions, and the formula of Nth-order soliton solutions of GI equation are
obtained through (2.24). However, as s22(k) has multiple high-order zero points, the residue conditions
are not enough, and the coefficients related to much higher negative power of k ± kj and k ± k∗

j should
be considered. For convenience, we will consider the simplest case at first where s22(k) has only one
higher-order zero point.

Let k0 ∈ D+ be the Nth-order pole, from the symmetries (2.15) and (2.16) it is obvious that −k0 ∈ D+

also is the Nth-order pole of s22(k). Then ±k∗
0 are the Nth-order poles of s11(k). The discrete spectrum

is the set

{±k0,±k∗
0}, (2.26)

which can be seen in Fig. 1.
Let

s22(k) = (k2 − k2
0)s0(k), (2.27)
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Fig. 1. Distribution of the the discrete spectrum and the contours for the RH problem on complex k-plane

in which s0(k) �= 0 in D+. According to the Laurent series expansion in poles, r(k) and r∗(k∗) can be,
respectively, expanded as

r(k) = r0(k) +
N∑

m=1

rm

(k − k0)m
, in k0; r(k) = r̃0(k) +

N∑
m=1

(−1)m+1rm

(k + k0)m
in − k0; (2.28a)

r∗(k∗) = r∗
0(k

∗) +
N∑

m=1

r∗
m

(k − k∗
0)m

in k∗
0 ; r∗(k∗) = r̃∗

0(k
∗) +

N∑
m=1

(−1)m+1r∗
m

(k + k∗
0)

in − k∗
0 ;(2.28b)

where rm are defined by

rm = lim
k→k0

1
(N − m)!

∂N−m

∂kN−m
[(k − k0)Nr(k)], m = 1, 2, . . . , N, (2.29)

and r0(k) and r̃0(k) are analytic for all k ∈ D+. The definition of M(x, t, k) yields that k = ±k0 are
Nth-order poles of M12, while k = ±k∗

0 are Nth-order poles of M11. According to the normalization
condition sated in proposition 5, one can set

M11(x, t, k) = 1 +
N∑

s=1

( Fs(x, t)
(k − k∗

0)s
+

Hs(x, t)
(k + k∗

0)s

)
, (2.30a)

M12(x, t, k) =
N∑

s=1

( Gs(x, t)
(k − k0)s

+
Ls(x, t)

(k + k0)s

)
, (2.30b)

where Fs(x, t), Hs(x, t), Gs(x, t), Ls(x, t)(s = 1, 2, . . . , N) are unknown functions which need to be
determined. Once these functions are solved, the solution M(x, t, k) of RHP will be obtained and the
solutions q(x, t) of the GI equation will be obtained from (2.24).
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Now we are in position to solve Fs(x, t), Hs(x, t), Gs(x, t) and Ls(x, t)(s = 1, 2, . . . , N). According to
Taylor series expansion, one has

e−2iθ(k) =
+∞∑
l=0

fl(x, t)(k − k0)l, e−2iθ(k) =
+∞∑
l=0

(−1)lfl(x, t)(k + k0)l, (2.31a)

e2iθ(k) =
+∞∑
l=0

f∗
l (x, t)(k − k∗

0)
l, e2iθ(k) =

+∞∑
l=0

(−1)lf∗
l (x, t)(k + k∗

0)
l, (2.31b)

M11(x, t, k) =
+∞∑
l=0

μl(x, t)(k − k0)l, M11(x, t, k) =
+∞∑
l=0

(−1)lμl(x, t)(k + k0)l, (2.31c)

M12(x, t, k) =
+∞∑
l=0

ζl(x, t)(k − k∗
0)

l, M12(x, t, k) =
+∞∑
l=0

(−1)l+1ζl(x, t)(k + k∗
0)

l, (2.31d)

where

fl(x, t) = lim
k→k0

1
l!

∂l

∂kl
e−2ik2(x+2k2t); (2.32a)

μl(x, t) = lim
k→k0

1
l!

∂l

∂kl
M11(x, t, k), ζl(x, t) = lim

k→k∗
0

1
l!

∂l

∂kl
M12(x, t, k). (2.32b)

When k ∈ D+, we have the expansions in k = k0

M11(k) = φ−,11 =
+∞∑
l=0

μl(x, t)(k − k0)l, M12(k) =
φ+,22

s22
= e−2iθr(k)φ−,11 + φ−,12. (2.33)

comparing the coefficients of (k − k0)−s with (2.30b), we can get

Gs(x, t) =
N∑

j=s

j−s∑
l=0

rjfj−s−l(x, t)μl(x, t). (2.34)

Similarly, from the expansions in k = −k0, we can get that

Ls(x, t) =
N∑

j=s

j−s∑
l=0

(−1)s+1rjfj−s−l(x, t)μl(x, t). (2.35)

With the same method, when k ∈ D−, we can obtain that

Fs(x, t) = −
N∑

j=s

j−s∑
l=0

r∗
j f∗

j−s−l(x, t)ζl(x, t), Hs(x, t) =
N∑

j=s

j−s∑
l=0

(−1)s+1r∗
j f∗

j−s−l(x, t)ζl(x, t). (2.36)

Actually, μl(x, t) and ζl(x, t) can also be expressed by Fs(x, t), Hs(x, t), Gs(x, t) and Ls(x, t). Recalling
the definitions of ζl(x, t) and μl(x, t) given by (2.32b) and substituting (2.30) into them, we can obtain

ζl(x, t) =
N∑

s=1

(
s + l − 1

l

){ (−1)lGs(x, t)
(k∗

0 − k0)l+s
+

(−1)lLs(x, t)
(k∗

0 + k0)l+s

}
, l = 0, 1, 2, . . . , (2.37)

μl(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

1 +
N∑

s=1

{
Fs(x,t)

(k0−k∗
0 )

s + Hs(x,t)
(k0+k∗

0 )
s

}
, l = 0;

N∑
s=1

(
s + l − 1

l

){
(−1)lFs(x,t)
(k0−k∗

0 )
s+l + (−1)lHs(x,t)

(k0+k∗
0 )

s+l

}
, l = 1, 2, 3, . . .

(2.38)
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Using (2.36) and (2.3), we obtain the system

Fs(x, t) = −
N∑

j=s

j−s∑
l=0

N∑
p=1

(
p + l − 1

l

)
r∗
j f∗

j−s−l

{
(−1)lGp(x, t)
(k∗

0 − k0)l+p
+

(−1)lLp(x, t)
(k∗

0 + k0)l+p

}
, (2.39a)

Hs(x, t) =
N∑

j=s

j−s∑
l=0

N∑
p=1

(−1)s+1

(
p + l − 1

l

)
r∗
j f∗

j−s−l

{
(−1)lGp(x, t)
(k∗

0 − k0)l+p
+

(−1)lLp(x, t)
(k∗

0 + k0)l+p

}
, (2.39b)

Gs(x, t) =
N∑

j=s

rjfj−s +
N∑

j=s

j−s∑
l=0

N∑
p=1

(
p + l − 1

l

)
rjfj−s−l

{
(−1)lFp(x, t)
(k0 − k∗

0)l+p
+

(−1)lHp(x, t)
(k0 + k∗

0)l+p

}
, (2.39c)

Ls(x, t) =
N∑

j=s

(−1)s+1rjfj−s (2.39d)

+
N∑

j=s

j−s∑
l=0

N∑
p=1

(−1)s+1

(
p + l − 1

l

)
rjfj−s−l

{
(−1)lFp(x, t)
(k0 − k∗

0)l+p
+

(−1)lHp(x, t)
(k0 + k∗

0)l+p

}
,

Let us introduce

|η〉 = (η1, . . . , ηN )T , ηs =
N∑

j=s

rjfj−s(x, t), (2.40)

|η̃〉 = (η̃1, . . . , η̃N )T , η̃s =
N∑

j=s

(−1)s+1rjfj−s(x, t), (2.41)

|F 〉 = (F1, F2, . . . , FN )T , |H〉 = (H1,H2, . . . , HN )T , (2.42)

|G〉 = (G1, G2, . . . , GN )T , |L〉 = (L1, L2, . . . , LN )T , (2.43)

Ω1 = [Ω1,sp]N×N =
[

−
N∑

j=s

j−s∑
l=0

(
p + l − 1

l

) (−1)lr∗
j f∗

j−s−l(x, t)
(k∗

0 − k0)l+p

]
N×N

, (2.44)

Ω2 = [Ω2,sp]N×N =
[

−
N∑

j=s

j−s∑
l=0

(
p + l − 1

l

) (−1)lr∗
j f∗

j−s−l(x, t)
(k∗

0 + k0)l+p

]
N×N

, (2.45)

Ω3 = [Ω3,sp]N×N =
[ N∑

j=s

j−s∑
l=0

(
p + l − 1

l

) (−1)s+l+1r∗
j f∗

j−s−l(x, t)
(k∗

0 − k0)l+p

]
N×N

, (2.46)

Ω4 = [Ω4,sp]N×N =
[ N∑

j=s

j−s∑
l=0

(
p + l − 1

l

) (−1)s+l+1r∗
j f∗

j−s−l(x, t)
(k∗

0 + k0)l+p

]
N×N

, (2.47)

where the superscript T denotes the transposed matrix. Thus, the linear system (2.39) can be rewritten
as ⎧⎪⎪⎨

⎪⎪⎩

I|F 〉 + 0|H〉 − Ω1|G〉 − Ω2|L〉 = 0
0|F 〉 + I|H〉 − Ω3|G〉 − Ω4|L〉 = 0
Ω∗

1|F 〉 + Ω∗
2|H〉 + I|G〉 + 0|L〉 = |η〉

Ω∗
3|F 〉 + Ω∗

4|H〉 − 0|G〉 − I|L〉 = −|η̃〉
(2.48)

Through direct calculations, (|F 〉, |H〉)T and (|G〉, |L〉)T are explicitly solved as

(|F 〉, |H〉)T = Ω(Iσ + Ω∗Ω)−1)(|η〉,−|η̃)T , (2.49)

(|G〉, |L〉)T = (Iσ + Ω∗Ω)−1)(|η〉,−|η̃)T , (2.50)
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where

Ω =
(

Ω1 Ω2

Ω3 Ω4

)
, Iσ =

(
IN×N

−IN×N

)
. (2.51)

Substituting (|F 〉, |H〉)T and (|G〉, |L〉)T into the expansions of M11(x, t, k) and M12(x, t, k) given by
(2.30), since it is well known that for matrix Am×n, Bn×m ∈ K (K is a field of numbers) det(Im +AB) =
det(In + BA) (Im and In are m and n dimension identity matrix, respectively), we get that

M11(x, t, k) = 1 +
(〈Y |, 〈Ỹ |)(|F 〉, |H〉)T

= det
(
1 + (〈Y |, 〈Ỹ |)(|F 〉, |H〉)T

)
= det

(
1 + (〈Y |, 〈Ỹ |)Ω(Iσ + Ω∗Ω)−1(|η〉,−|η̃〉)T

)
= det

(
I + (|η〉,−|η̃〉)T (〈Y |, 〈Ỹ |)Ω(Iσ + Ω∗Ω)−1

)

=
det
(
Iσ + Ω∗Ω + (|η〉,−|η̃〉)T (〈Y |, 〈Ỹ |)Ω)

det
(
Iσ + Ω∗Ω

) ,

(2.52)

where

〈Y (k)| = (
1

k − k∗
0

,
1

(k − k∗
0)2

, . . . ,
1

(k − k∗
0)N

), 〈Ỹ (k)| = (
1

k + k∗
0

,
1

(k + k∗
0)2

, . . . ,
1

(k + k∗
0)N

). (2.53)

In the same way, we get that

M12 =
det
(
Iσ + Ω∗Ω + (|η〉,−|η̃〉)T (〈Y ∗(k∗)|, 〈Ỹ ∗(k∗)|)

)
det
(
Iσ + Ω∗Ω

) − 1. (2.54)

Theorem 1. With the rapidly decaying initial condition (1.5), the N th order soliton of GI equation is

q(x, t) = 2i

⎡
⎣det

(
Iσ + Ω∗Ω + (|η〉,−|η̃〉)T (〈Y0|, 〈Y0|)

)
det
(
Iσ + Ω∗Ω

) − 1

⎤
⎦ , (2.55)

where

〈Y0| = (1, 0, . . . , 0)1×N . (2.56)

Proof. From the expansion of M12(x, t, k), it follows that

q(x, t) = lim
k→∞

2ikM12(x, t, k)

= lim
k→∞

2ik
(〈Y ∗(k∗)|, 〈Ỹ ∗(k∗)|)(|G〉, |L〉)T

= lim
k→∞

2ik
(〈Y ∗(k∗)|, 〈Ỹ ∗(k∗)|)(Iσ + Ω∗Ω

)−1(|η〉,−|η̃〉)T
= 2i

(〈Y0|, 〈Y0|
)(

Iσ + Ω∗Ω
)−1(|η〉,−|η̃〉)T

= 2i

⎡
⎣det

(
Iσ + Ω∗Ω + (|η〉,−|η̃〉)T (〈Y0|, 〈Y0|)

)
det
(
Iσ + Ω∗Ω

) − 1

⎤
⎦ .
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2.4. Multiple high-order pole solutions

Now we will study the general case that s22(k) has N high-order zero points k1, k2,. . . ,kN , ki ∈ D+ for
i = 1, 2, . . . , N , and their powers are n1, n2,. . . ,nN , respectively. Let rj(k) be r(k)′s Laurent series in
k = ±kj , like the case of one high-order pole discussed above, we can obtain

rj(k) = rj,0(k) +
nj∑

mj=1

rj,mj

(k − kj)mj
, r∗

j (k∗) = r∗
j,0(k

∗) +
nj∑

mj=1

r∗
j,mj

(k − k∗
j )mj

, (2.57)

rj(k) = r̃j,0(k) +
nj∑

mj=1

(−1)mj+1rj,mj

(k + kj)mj
, r∗

j (k∗) = r̃∗
j,0(k

∗) +
nj∑

mj=1

(−1)mj+1r∗
j,mj

(k + k∗
j )mj

, (2.58)

where

rj,mj
= lim

k→kj

1
(nj − mj)!

∂nj−mj

∂knj−mj

[
(k − kj)nj r(k)

]
,

and rj,0(k) (j = 1, . . . , N) is analytic for all k ∈ D+.
By the similar method in above, the multiple solitons of the GI equation are obtained as follows.

Theorem 2. With the rapidly decaying initial condition (1.5), if s22(k) has N distinct high-order poles,
then the multiple solitons of GI equation have the same form as (2.55)

q(x, t) = 2i
[det

(
Iσ + Ω∗Ω + |η〉〈Y0|

)
det
(
Iσ + Ω∗Ω

) − 1
]
, (2.59)

where

|η〉 = [|η1〉, |η2〉, . . . , |ηN 〉]T , |ηj〉 = [ηj,1, ηj,2, . . . , ηj,nj
,−η̃j,1,−η̃j,2, . . . ,−η̃j,nj

], (2.60a)

ηj,l =
nj∑

mj=l

rj,mj
fmj−l(x, t), η̃j,l =

nj∑
mj=l

(−1)l+1rj,mj
fmj−l(x, t), (2.60b)

〈Y0| = [〈Y 0
1 |, 〈Y 0

2 |, . . . , 〈Y 0
N |], 〈Y 0

j | = [〈Y 00
j |, 〈Y 00

j |], 〈Y 00
j | = [1, 0, . . . , 0]1×nj

, (2.60c)

Ω =

⎛
⎜⎜⎜⎝

[ω11] [ω12] · · · [ω1N ]
[ω21] [ω22] · · · [ω2N ]

...
...

. . .
...

[ωN1] [ωN2] · · · [ωNN ]

⎞
⎟⎟⎟⎠ , [ωjl]2nj×2nl

=
(

[w1
jl]nj×nl

[ω2
jl]nj×nl

[w3
jl]nj×nl

[ω4
jl]nj×nl

)
, (2.60d)

w1
jl,pq = −

nj∑
mj=p

mj−p∑
sj=0

(
q + sj − 1

sj

) (−1)sj r∗
j,mj

f∗
j,mj−p−sj

(k∗
j − kl)sj+q

, (2.60e)

w2
jl,pq = −

nj∑
mj=p

mj−p∑
sj=0

(
q + sj − 1

sj

) (−1)sj r∗
j,mj

f∗
j,mj−p−sj

(k∗
j + kl)sj+q

, (2.60f)

w3
jl,pq =

nj∑
mj=p

mj−p∑
sj=0

(
q + sj − 1

sj

) (−1)p+sj+1r∗
j,mj

f∗
j,mj−p−sj

(k∗
j − kl)sj+q

, (2.60g)

w4
jl,pq =

nj∑
mj=p

mj−p∑
sj=0

(
q + sj − 1

sj

) (−1)p+sj+1r∗
j,mj

f∗
j,mj−p−sj

(k∗
j + kl)sj+q

, (2.60h)
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Fig. 2. One-soliton with one second-order pole, here taking parameters r1 = 1, r2 = 2, k0 = e
πi
4 , k∗

0 = e− πi
4 . a The

three-dimensional graph. b The contour of the wave

Iσ =

⎛
⎜⎜⎜⎜⎜⎝

In1×n1

−In1×n1

. . .
InN ×nN

−InN ×nN

⎞
⎟⎟⎟⎟⎟⎠

. (2.60i)

We then give the figure of one-soliton solution with one second-order pole (Fig. 2).

3. IST with nonzero boundary and high-order poles

3.1. Riemann surface and uniformization variable

To make convenience for the later calculation, we handle the Lax pair (2.1) and the boundary condition
(1.6) at the beginning. We make a gauge transformation

q → qe− 3
2 iq4

0t+iq2
0x,

φ → e(−
3
4 iq4

0t+ 1
2 iq2

0x)σ3φ.

The GI equation (1.4) then becomes

iqt + qxx + 2iq20qx − iq2q∗
x − q20q

2q∗ +
1
2
q3q∗2 +

1
2
q40q = 0, (3.1)

with corresponding boundary

lim
x→±∞ q(x, t) = q±, (3.2)

where |q±| = q0.
The GI equation (3.1) is the compatibility condition of the Lax pair

φx = Xφ, φt = Tφ, (3.3)
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where

X = −ik2σ3 +
i

2
(|q|2 − q20)σ3 + kQ, Q =

(
0 q

−q∗ 0

)
,

T = −2ik4σ3 + (ik2|q|2 − iq20 |q|2 +
i

4
|q|4 +

3
4
iq40)σ3 +

1
2
(QxQ − QQx)

+ 2k3Q − ikQxσ3 − kq20Q.

Under the boundary (3.2), asymptotic spectral problem of the Lax pair (3.3) becomes

φx = X±φ, φt = T±φ, (3.4)

where

X± = −ik2σ3 + kQ±, T± = (2k2 − q20)X±, (3.5)

and

Q± =
(

0 q±
−q∗

± 0

)
.

The eigenvalues of the matrix X± are ±ikλ, where λ2 = k2 + q20 . Since the eigenvalues are doubly
branched, we introduce the two-sheeted Riemann surface defined by

λ2 = k2 + q20 , (3.6)

then λ(k) is single-valued on this surface. The branch points are k = ±iq0. Letting

k + iq0 = r1e
iθ1 , k − iq0 = r2e

iθ2 ,

we can get two single-valued analytic functions on the Riemann surface

λ(k) =

{ (r1r2)1/2ei(θ1+θ2)/2, on S1,

−(r1r2)1/2ei(θ1+θ2)/2, on S2,
(3.7)

where −π/2 < θj < 3/2π for j = 1, 2.
Gluing the two copies of the complex plane S1 and S2 along the segment [−iq0, iq0], we then obtain

the Riemann surface. Along the real k axis, we have λ(k) = ±sign(k)
√

k2 + q20 , where the “±” applies
on S1 and S2 of the Riemann surface, respectively, and where the square root sign denotes the principal
branch of the real-valued square root function.

Next, we take a uniformization variable

z = k + λ, (3.8)

then we obtain two single-valued functions

k(z) =
1
2
(z − q20

z
), λ(z) =

1
2
(z +

q20
z

). (3.9)

This implies that we can discuss the scattering problem on a standard z-plane instead of the two-sheeted
Riemann surface by the inverse mapping. We define D+, D− and Σ on z-plane as

Σ = R ∪ iR\{0}, D+ = {z : RezImz > 0}, D− = {z : RezImz < 0}.

the two domains are shown in Fig. 3.
From these discussions, we can derive that

Im(k(z)λ(z)) = Im
z4 − q40

4z2
= Im

(|z|4 + q40)z
2 − 2q40((Rez)2 − (Imz)2)

4|z|4

=
1

4|z|4 (|z|4 + q40)Imz2 =
1

2|z|4 (|z|4 + q40)RezImz,
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Fig. 3. Complex z-plane consists of the region D+ (the violet regions) and the D− (the white regions)

which implies that

Im(k(z)λ(z))

{= 0, as z ∈ Σ
> 0, as z ∈ D+ .
< 0, as z ∈ D−

(3.10)

3.2. Spectral analysis

3.2.1. Eigenfunctions and scattering matrix. For eigenvalue ±iλ, we can write the asymptotic eigenvector
matrix as

Y± =

(
1 − iq±

z

− iq∗
±

z 1

)
= I − i

z
σ3Q±, (3.11)

so that X± and T± can be diagonalized by Y±

X± = Y±(−ikλσ3)Y −1
± , T± = Y±(−(2k2 − q20)ikλσ3)Y −1

± . (3.12)

Direct computation shows that

det(Y±) = 1 +
q20
z2

� γ, (3.13)

and

Y −1
± =

1
γ

(
1 iq±

z
iq∗

±
z 1

)
=

1
γ

(I +
i

z
σ3Q±), z �= ±iq0. (3.14)

Substituting (3.12) into (3.4), we immediately obtain

(Y −1
± ψ)x = −ikλσ3(Y −1

± ψ), (Y −1
± ψ)t = −(2k2 − q20)ikλσ3(Y −1

± ψ), z �= ±iq0, (3.15)
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from which we can derive the solution of the asymptotic spectral problem (3.4)

ψ(x, t, z) =

{
Y±eiθ(z)σ3 , z �= ±iq0,
I + (x − 3q20t)Y±(z), z = ±iq0,

(3.16)

where

θ(x, t, z) = −k(z)λ(z)[x + (2k2(z) − q20)t].

For convenience, we will omit x and t dependence in θ(x, t, z) henceforth.
We define the Jost eigenfunctions φ±(x, t, z) as the simultaneous solutions of both parts of the Lax

pair so that

φ± = Y±eiθ(z)σ3 + o(1), x → ±∞. (3.17)

We introduce modified eigenfunctions by factorizing the asymptotic exponential oscillations

μ± = φ±e−iθ(z)σ3 , (3.18)

then we have

μ± ∼ Y±, x → ±∞.

Meanwhile, μ± acquire the equivalent Lax pair

(Y −1
± μ±)x − ikλ[Y −1

± μ±, σ3] = Y −1
± ΔX±μ±, (3.19)

(Y −1
± μ±)t − ikλ(2k2 − q20)[Y

−1
± μ±, σ3] = Y −1

± ΔT±μ±, (3.20)

where ΔX± = X − X± and ΔT± = T − T±. These two equations can be written in full derivative form

d(e−iθ(z)σ̂3Y −1
± μ±) = e−iθ(z)σ̂3 [Y −1

± (ΔX±dx + ΔT±dt)μ±], (3.21)

which leads to the Volterra integral equations

μ±(x, t, z) =

{
Y± +

∫ x

±∞ Y±e−ikλ(x−y)σ̂3 [Y −1
± ΔX±(y, t)μ±(y, t, z)]dy, z �= ±iq0,

Y± +
∫ x

±∞[I + (x − y)X±(z)]ΔX±(y, t)μ±(y, t, z)dy, z = ±iq0,
(3.22)

where we define eασ̂A := eασAe−ασ, for a matrix A.
Since trX = trT = 0 in (3.3), then by using Abel formula, we have

(det φ±)x = (det φ±)t = 0, det(μ±) = det(φ±e−iθ(z)σ3) = det(φ±).

So that (detμ±)x = (det μ±)t = 0, which means det(μ±) is independent with x, t. Furthermore, we know
that μ± is invertible from

det μ± = lim
x→±∞ det(μ±) = det Y± = γ �= 0, x, t ∈ R, z ∈ Σ0. (3.23)

Since φ± are two fundamental matrix solutions of the linear Lax pair (3.3), there exists a relation
between φ+ and φ−

φ+(x, t, z) = φ−(x, t, z)S(z), x, t ∈ R, z ∈ Σ0, (3.24)

where S(z) is called scattering matrix and (3.23) implies that detS(z) = 1. Letting S(z) = (sij), for the
individual columns

φ+,1 = s11φ−,1 + s21φ−,2, φ+,2 = s12φ−,1 + s22φ−,2. (3.25)

By using (3.24), we obtain

s11(z) =
Wr(φ+,1, φ−,2)

γ
, s12(z) =

Wr(φ+,2, φ−,2)
γ

, (3.26)

s21(z) =
Wr(φ−,1, φ+,1)

γ
, s22(z) =

Wr(φ−,1, φ+,2)
γ

. (3.27)
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3.2.2. Analyticity. Here we directly state the analyticity of eigenfunctions μ± and scattering data s11, s22,
the detail proofs of them were given in our paper [39].

Proposition 5. Suppose q(x, t) − q± ∈ L1(R±), then the Volterra integral equation (3.22) has unique
solutions μ±(x, t, z) defined by (3.18) in Σ0 := Σ \ {±iq0}. Moreover, the columns μ−,1 and μ+,2 can be
analytically extended to D+ and continuously extended to D+ ∪ Σ0, while the columns μ+,1 and μ−,2 can
be analytically extended to D− and continuously extended to D− ∪Σ0, where μ±,j(x, t, z)(j = 1, 2) denote
the j-th column of μ±.

Proposition 6. Suppose (1 + |x|)(q(x, t) − q±) ∈ L1(R±), then the Volterra integral equation (3.22) has
unique solutions μ±(x, t, z) defined by (3.18) in Σ. Besides, the columns μ−,1 and μ+,2 can be analytically
extended to D+ and continuously extended to D+∪Σ, while the columns μ+,1 and μ−,2 can be analytically
extended to D− and continuously extended to D− ∪ Σ.

Lemma 1. Consider an n-dimensional first-order homogeneous linear ordinary differential equation, dy(x)/dx =
A(x)y(x), on an interval D ∈ R, where A(x) denotes a complex square matrix of order n. Let Φ be a
matrix-valued solution of this equation. If the trace trA(x) is a continuous function, then one has

det Φ(x) = det Φ(x0) exp
[ x∫

x0

trA(ξ)dξ
]
, x, x0 ∈ D. (3.28)

Proposition 7. The Jost solutions Φ(x, t, z) are the simultaneous solutions of both parts of the Lax pair
(3.3).

Proposition 8. Suppose q(x, t) − q± ∈ L1(R±). Then s11 can be analytically extended to D− and contin-
uously extended to D− ∪ Σ0, while s22 can be analytically extended to D+ and continuously extended to
D+ ∪ Σ0. Moreover, s12 and s21 are continuous in Σ0.

Note that we cannot exclude the possible existence of zeros for s11(z) and s22(z) along Σ0. To solve
the RH problem, we restrict our consideration to potentials without spectral singularities, i.e., s11(z) �= 0,
s22(z) �= 0 for z ∈ Σ. Besides, we assume that the scattering coefficients are continuous at the branch
points. The reflection coefficients which will be needed in the inverse problem are

r̃(z) =
s21
s11

, r(z) =
s12
s22

. (3.29)

3.2.3. Symmetries. For the GI equation with nonzero boundary, we not only need to deal with the map
k �→ k∗, but also need to pay attention to the sheets of the Riemann surface. We can see from the Riemann
surface that the transformation z �→ z∗ implies (k, λ) �→ (k∗, λ∗) and z �→ −q20/z implies (x, λ) �→ (k,−λ).
Therefore, we would like to discuss the symmetries in the following way.

Proposition 9. The Jost solution, scattering matrix and reflection coefficients satisfy the following reduc-
tion conditions on z-plane

• The first symmetry reduction

φ±(x, t, z) = σ2φ
∗
±(x, t, z∗)σ2, S(z) = σ2S

∗(z∗)σ2, r(z) = −r̃∗(z∗), (3.30)

where σ2 =
(

0 −i
i 0

)
.

• The second symmetry reduction

φ±(x, t, z) = σ1φ
∗
±(x, t,−z∗)σ1, S(z) = σ1S

∗(−z∗)σ1, r(z) = r̃∗(−z∗), (3.31)

where σ1 =
(

0 1
1 0

)
.
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• The third symmetry reduction

φ±(x, t, z) = − i

z
φ±(x, t,−q20

z
)σ3Q±, (3.32)

S(z) = (σ3Q−)−1S(−q20
z

)σ3Q+, r∗(z∗) =
q−
q∗−

r̃(−q20
z

). (3.33)

3.2.4. Asymptotic behaviors. To solve the RH problem in the next section, it is necessary to discuss
the asymptotic behaviors of the modified Jost solutions and scattering matrix as z → ∞ and z → 0 by
the standard Wentzel–Kramers–Brillouin (WKB) expansions.

Proposition 10. The asymptotic behaviors for the modified Jost solutions are given as

μ±(x, t, z) = I + o(z−1), z → ∞, (3.34)

μ±(x, t, z) = − i

z
σ3Q± + o(1), z → 0. (3.35)

From (3.34), we can get that

q(x, t) = lim
z→∞ izμ

(12)
± , (3.36)

which will be used in the following. Inserting the above asymptotic behaviors for the modified Jost
eigenfunctions into the Wronskian representation (3.26) and (3.27), with a little calculations, we get the
asymptotic behaviors of the scattering matrix.

Proposition 11. The asymptotic behaviors of the scattering matrix are

S(z) = I + O(z−1), z → ∞, (3.37)

S(z) = diag(
q−
q+

,
q+
q−

) + O(z), z → 0. (3.38)

3.2.5. Distribution of spectrum. The discrete spectrum of the scattering problem is the set of all values
z ∈ C \ Σ, for which eigenfunctions exist in L2(R). We would like to show that these values are the zeros
of s11(z) in D− and those of s22(z) in D+.

We can show that the uniformization transformation (3.9) changes the segment [−iq0, iq0] on k-plane
into the circle |z| = q0 on z-plane. We suppose that s22 has one Nth-order zero z0 in D+ ∩ {z ∈ C :
Imz > 0, |z| > q0}, then symmetries (3.30)-(3.33) imply that

s22(±z0) = 0 ⇔ s∗
11(±z∗

0) = 0 ⇔ s11(±q20
z0

) = 0 ⇔ s22(± q20
z∗
0

) = 0. (3.39)

Therefore, the discrete spectrum is the set

Z =
{

±z0,±z∗
0 ,±q20

z0
,± q20

z∗
0

}
, (3.40)

which can be seen in Fig. 4.

3.3. Riemann–Hilbert Problem

As we all know, the equation (3.24) is the beginning of the formulation of the inverse problem. We
always regard it as a relation between eigenfunctions analytic in D+ and those analytic in D−. Thus, it
is necessary for us to introduce the following RH problem.
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Fig. 4. Distribution of the the discrete spectrum and the contours for the RH problem on complex z-plane

Proposition 12. Define the sectionally meromorphic matrix

M(x, t, z) =

{
M− =

( μ+,1

s11
μ−,2

)
, as z ∈ D−,

M+ =
(

μ−,1
μ+,2

s22

)
, as z ∈ D+.

(3.41)

Then a multiplicative matrix RH problem is proposed:
• Analyticity: M(x, t, z) is analytic in C \ Σ and has single poles.
• Jump condition

M−(x, t, z) = M+(x, t, z)(I − G(x, t, z)), z ∈ Σ, (3.42)

where

G(x, t, z) =
(

r(z)r̃(z) e2iθr(z)
−e−2iθ r̃(z) 0

)
. (3.43)

• Asymptotic behaviors

M(x, t, z) ∼ I + O(z−1), z → ∞, (3.44)

M(x, t, z) ∼ − i

z
σ3Q− + O(1), z → 0. (3.45)

From (3.36), we know that

q(x, t) = lim
z→∞ izM (12). (3.46)

3.4. Single high-order pole solutions

Let z0 ∈ D+ be the Nth-order pole, from the symmetries (3.30)-(3.32) it is obvious that −z0, ± q2
0

z∗
0

∈ D+

also is the Nth-order pole of s22(z). Then ±z∗
0 and ± q2

0
z0

are the Nth-order poles of s11(z). The discrete
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spectrum is the set {
±z0,±z∗

0 ,± q20
z∗
0

,±q20
z0

}
, (3.47)

which can be seen in Fig. 4
Let ν1 = z0, ν2 = q2

0
z∗
0
, then the discrete spectrum is {±ν1,±ν2,±ν∗

1 ,±ν∗
2}. Let

s22(z) = (z2 − ν2
1)N (z2 − ν2

2)Ns0(z), (3.48)

in which s0(z) �= 0 in D+. According to the Laurent series expansion in poles, r(z) and r∗(z∗) can be,
respectively, expanded as

rj(z) = r0,j(z) +
N∑

mj=1

rj,mj

(z − νj)mj
, in z = νj , j = 1, 2; (3.49a)

rj(z) = r̃0,j(z) +
N∑

mj=1

(−1)mj+1rj,mj

(z + νj)mj
in z = −νj , j = 1, 2; (3.49b)

r∗
j (z∗) = r∗

0,j(z
∗) +

N∑
mj=1

r∗
j,mj

(z − ν∗
j )mj

in z = ν∗
j , j = 1, 2; (3.49c)

r∗
j (z∗) = r̃∗

0,j(z
∗) +

N∑
mj=1

(−1)mj+1r∗
j,mj

(z + ν∗
j )

in z = −ν∗
j , j = 1, 2, (3.49d)

where rj,mj
are defined by

rj,mj
= lim

z→νj

1
(N − mj)!

∂N−mj

∂zN−mj
[(z − νj)Nrj(z)], mj = 1, 2, . . . , N. (3.50)

and r0,j(z) and r̃0,j(z) are analytic for all z ∈ D+. The definition of M(x, t, k) yields that z = ±νj

(j = 1, 2) are Nth-order poles of M12, while z = ±ν∗
j (j = 1, 2) are Nth-order poles of M11. According to

the normalization condition sated in Proposition 13 one can set

M11(x, t, z) = 1 +
2∑

j=1

N∑
s=1

(
Fj,s(x, t)
(z − ν∗

j )s
+

Hj,s(x, t)
(z + ν∗

j )s

)
, (3.51a)

M12(x, t, z) = − i

z
q− +

2∑
j=1

N∑
s=1

(
Gj,s(x, t)
(z − νj)s

+
Lj,s(x, t)
(z + νj)s

)
, (3.51b)

where Fj,s(x, t), Hj,s(x, t), Gj,s(x, t), Lj,s(x, t)(s = 1, 2, . . . , N , j = 1, 2) are unknown functions which
need to be determined. Once these functions are solved, the solution M(x, t, z) of RHP will be obtained
and the solutions q(x, t) of the GI equation will be obtained from (3.51).

Now we are in position to solve Fj,s(x, t), Hj,s(x, t), Gj,s(x, t) and Lj,s(x, t)(s = 1, 2, . . . , N , j = 1, 2).
According to Taylor series expansion, one has

e2iθ(z) =
+∞∑
l=0

fj,l(x, t)(z − νj)l, e2iθ(z) =
+∞∑
l=0

(−1)lfj,l(x, t)(z + νj)l, (3.52a)

e−2iθ(z) =
+∞∑
l=0

f∗
j,l(x, t)(z − ν∗

j )l, e−2iθ(z) =
+∞∑
l=0

(−1)lf∗
j,l(x, t)(z + ν∗

j )l, (3.52b)

M11(x, t, z) =
+∞∑
l=0

μj,l(x, t)(z − νj)l, M11(x, t, z) =
+∞∑
l=0

(−1)lμj,l(x, t)(z + νj)l, (3.52c)
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M12(x, t, z) =
+∞∑
l=0

ζj,l(x, t)(z − ν∗
j )l, M12(x, t, z) =

+∞∑
l=0

(−1)l+1ζj,l(x, t)(z + ν∗
j )l, (3.52d)

where

fj,l(x, t) = lim
z→νj

1
l!

∂l

∂zl
e2iθ(z), (3.53a)

μj,l(x, t) = lim
z→νj

1
l!

∂l

∂zl
M11(x, t, z), ζj,l(x, t) = lim

z→ν∗
j

1
l!

∂l

∂zl
M12(x, t, z). (3.53b)

When z ∈ D+, we have the expansions in z = νj (j = 1, 2)

M11(z) = μ−,11 =
+∞∑
l=0

μj,l(x, t)(z − νj)l, (3.54)

M12(z) =
μ+,22(x, t, z)

s22(z)
= e2iθr(z)μ−,11(x, t, z) + μ−,12(x, t, z) (3.55)

comparing the coefficients of (z − νj)−s with (3.51b), we can get

Gj,s(x, t) =
N∑

mj=s

mj−s∑
l=0

rj,mj
fj,mj−s−l(x, t)μj,l(x, t). (3.56)

Similarly, from the expansions in z = −νj (j = 1, 2), we can get that

Lj,s(x, t) =
N∑

mj=s

mj−s∑
l=0

(−1)s+1rj,mj
fj,mj−s−l(x, t)μj,l(x, t). (3.57)

By the same method, when z ∈ D−, we can obtain that

Fj,s(x, t) = −
N∑

mj=s

mj−s∑
l=0

r∗
j,mj

f∗
j,mj−s−l(x, t)ζj,l(x, t), (3.58)

Hj,s(x, t) =
N∑

mj=s

mj−s∑
l=0

(−1)s+1r∗
j,mj

f∗
j,mj−s−l(x, t)ζj,l(x, t). (3.59)

Actually, μj,l(x, t) and ζj,l(x, t) (j = 1, 2) can also be expressed by Fj,s(x, t), Hj,s(x, t), Gj,s(x, t) and
Lj,s(x, t) (j = 1, 2). Recalling the definitions of ζj,l(x, t) and μj,l(x, t) (j = 1, 2) given by (3.53b) and
substituting (3.51) into them, we can obtain

ζj,l(x, t) =
(−1)l+1

(ν∗
j )l+1

iq− +
2∑

p=1

N∑
s=1

(
s + l − 1

l

){ (−1)lGp,s(x, t)
(ν∗

j − νp)l+s
+

(−1)lLp,s(x, t)
(ν∗

j + νp)l+s

}
, l = 0, 1, . . . , (3.60a)

μj,l(x, t) =

⎧⎪⎨
⎪⎩

1 +
∑2

p=1

∑N
s=1

{
Fp,s(x,t)
(νj−ν∗

p )
s + Hp,s(x,t)

(νj+ν∗
p)

s

}
, l = 0;

∑2
p=1

∑N
s=1

(
s + l − 1

l

){
(−1)lFp,s(x,t)
(νj−ν∗

p )
s+l + (−1)lHp,s(x,t)

(νj+ν∗
p )

s+l

}
, l = 1, 2, 3, . . .

(3.60b)
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Using (3.56)–(3.60), we obtain the system

Fj,s(x, t) = −iq−
N∑

mj=s

mj−s∑
l=0

(−1)l+1

(ν∗
j )l+1

r∗
j,mj

f∗
j,mj−s−l(x, t)

−
N∑

mj=s

mj−s∑
l=0

2∑
p=1

N∑
q=1

(
q + l − 1

l

)
r∗
j,mj

f∗
j,mj−s−l

{ (−1)lGp,q(x, t)
(ν∗

j − νp)l+q
+

(−1)lLp,q(x, t)
(ν∗

j + νp)l+q

}
,

(3.61a)

Hj,s(x, t) = iq−
N∑

mj=s

mj−s∑
l=0

(−1)s+l

(ν∗
j )l+1

r∗
j,mj

f∗
j,mj−s−l(x, t)

+
N∑

mj=s

mj−s∑
l=0

2∑
p=1

N∑
q=1

(−1)s+1

(
q + l − 1

l

)
r∗
j,mj

f∗
j,mj−s−l

{ (−1)lGp,q(x, t)
(ν∗

j − νp)l+q
+

(−1)lLp,q(x, t)
(ν∗

j + νp)l+q

}
,

(3.61b)

Gj,s(x, t) =
N∑

mj=s

rj,mj
fj,mj−s(x, t)

+
N∑

mj=s

mj−s∑
l=0

2∑
p=1

N∑
q=1

(
q + l − 1

l

)
rj,mj

fj,mj−s−l

{ (−1)lFp,q(x, t)
(νj − ν∗

p)l+q
+

(−1)lHp,q(x, t)
(νj + ν∗

p)l+q

}
,

(3.61c)

Lj,s(x, t) =
N∑

mj=s

(−1)s+1rj,mj
fj,mj−s(x, t)

+
N∑

mj=s

mj−s∑
l=0

2∑
p=1

N∑
q=1

(−1)s+1

(
q + l − 1

l

)
rj,mj

fj,mj−s−l

{ (−1)lFp,q(x, t)
(νj − ν∗

p)l+q
+

(−1)lHp,q(x, t)
(νj + ν∗

p)l+q

}
,

(3.61d)

Let us define

|ηj〉 = (ηj1, . . . , ηjN )T , ηjs = −iq−
N∑

mj=s

mj−s∑
l=0

(−1)l+1

(ν∗
j )l+1

r∗
j,mj

f∗
j,mj−s−l(x, t), j = 1, 2;

|η̃j〉 = (η̃j1, . . . , η̃jN )T , η̃js = iq−
N∑

mj=s

mj−s∑
l=0

(−1)s+l

(ν∗
j )l+1

r∗
j,mj

f∗
j,mj−s−l(x, t), j = 1, 2;

|ξj〉 = (ξj1, . . . , ξjN )T , ξjs =
N∑

mj=s

rj,mj
fj,mj−s(x, t), j = 1, 2;

|ξ̃j〉 = (ξ̃j1, . . . , ξ̃jN )T , ξ̃js =
N∑

mj=s

(−1)srj,mj
fj,mj−s(x, t), j = 1, 2;

Ωjp = [Ωjp]sq = −
N∑

mj=s

mj−s∑
l=0

(
q + l − 1

l

) (−1)lr∗
j,mj

f∗
j,mj−s−l

(ν∗
j − νp)l+q

, j, p = 1, 2;

Ωj,p+2 = [Ωj,p+2]sq = −
N∑

mj=s

mj−s∑
l=0

(
q + l − 1

l

) (−1)lr∗
j,mj

f∗
j,mj−s−l

(ν∗
j + νp)l+q

, j, p = 1, 2, ;
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Ωj+2,p = [Ωj+2,p]sq =
N∑

mj=s

mj−s∑
l=0

(−1)s+1

(
q + l − 1

l

) (−1)lr∗
j,mj

f∗
j,mj−s−l

(ν∗
j − νp)l+q

, j, p = 1, 2;

Ωj+2,p+2 = [Ωj+2,p+2]sq =
N∑

mj=s

mj−s∑
l=0

(−1)s+1

(
q + l − 1

l

) (−1)lr∗
j,mj

f∗
j,mj−s−l

(ν∗
j + νp)l+q

, j, p = 1, 2.

|Fp〉 = (Fp,1, . . . , Fp,N )T , |Hp〉 = (Hp,1, . . . , Hp,N )T , p = 1, 2;

|Gp〉 = (Gp,1, . . . , Gp,N )T , |Lp〉 = (Lp,1, . . . , Lp,N )T , p = 1, 2.

Let

Ω =

⎛
⎜⎝

Ω11 · · · Ω14

...
. . .

...
Ω41 · · · Ω44

⎞
⎟⎠ ; (3.62)

and

|α1〉 = (|η1〉, |η2〉, |η̃1〉, |η̃2〉)T , |α2〉 = (|ξ1〉, |ξ2〉, |ξ̃1〉, |ξ̃2〉)T ;

|K1〉 = (|F1〉, |F2〉, |H1〉, |H2〉)T , |K2〉 = (|G1〉, |G2〉, |L1〉, |L2〉)T .

Using the similar method with zero boundary condition, we have

|K2〉 = −Ω∗(Iσ + Ω∗Ω)−1α1 + (Iσ + Ω∗Ω)−1α2, (3.63)

where

Iσ =

⎛
⎜⎜⎝

I
I

−I
−I

⎞
⎟⎟⎠

4N×4N

,

so that

M12(x, t, z) = − i

z
q− + 〈Y |K2〉

= − i

z
q− + 〈Y |(−Ω∗(Iσ + Ω∗Ω)−1α1 + (Iσ + Ω∗Ω)−1α2)

= − i

z
q− +

det(Iσ + Ω∗Ω + |α2〉〈Y |) − det(Iσ + Ω∗Ω + |α1〉〈Y |Ω∗)
det(Iσ + Ω∗Ω)

,

(3.64)

where

〈Y | =
( 1

z − ν1
, . . . ,

1

(z − ν1)N
,

1

z − ν2
, . . . ,

1

(z − ν2)N
,

1

z + ν1
, . . . ,

1

(z + ν1)N
,

1

z + ν2
, . . . ,

1

(z + ν2)N

)
1×4N

.

Theorem 3. With the nonzero boundary condition (1.6), the N th-order soliton of GI equation is

q(x, t) = q− + i
[det(Iσ + Ω∗Ω + |α2〉〈Y0|) − det(Iσ + Ω∗Ω + |α1〉〈Y0|Ω∗)

det(Iσ + Ω∗Ω)

]
, , (3.65)

where

〈Y0| = (1, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0)1×4N . (3.66)
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3.5. Multiple high-order pole solutions

Now we will study the general case that s22(z) has N high-order zero points z1, z2,. . . ,zN , zk ∈ D+ for
k = 1, 2, . . . , N , and their powers are n1, n2,. . . ,nN , respectively. Let νk

1 = zk, νk
2 = q2

0
z∗

k
. Let rk

j (z) be
r(z)′s Laurent series in z = νk

j (j = 1, 2), like the case of one high-order pole discussed above, we can
obtain

rk
j (z) = rk

j,0(z) +
nk∑

mj=1

rk
j,mj

(z − νk
j )mj

, r∗k
j (z∗) = r∗

j,0(z
∗) +

nk∑
mj=1

rk∗
j,mj

(z − νk∗
j )mj

, (3.67)

rk
j (z) = r̃j,0(z) +

nk∑
mj=1

(−1)mj+1rk
j,mj

(z + νk
j )mj

, r∗k
j (z∗) = r̃∗

j,0(z
∗) +

nk∑
mj=1

(−1)mj+1rk∗
j,mj

(z + νk∗
j )mj

, (3.68)

where

rk
j,mj

= lim
z→νk

j

1
(nk − mj)!

∂nk−mj

∂knk−mj

[
(z − νk

j )nkr(z)
]
,

and rk
j,0(z) (k = 1, . . . , N) is analytic for all z ∈ D+.

By the similar method in above, the multiple solitons of the GI equation are obtained as follows.

Theorem 4. With the nonzero boundary condition (1.6), if s22(z) has N distinct high-order poles, then
the multiple solitons of GI equation have the same form as (3.65)

q(x, t) = q− + i
[det(Iσ + Ω∗Ω + |α2〉〈Y0|) − det(Iσ + Ω∗Ω + |α1〉〈Y0|Ω∗)

det(Iσ + Ω∗Ω)

]
, (3.69)

where

|α1〉 =
(|α1

1〉, . . . , |αN
1 〉)T , |αk

1〉 =
(|ηk

1 〉, |ηk
2 〉, |η̃k

1 〉, |η̃k
2 〉)T , k = 1, . . . , N, (3.70a)

|α2〉 =
(|α1

2〉, . . . , |αN
2 〉)T , |αk

2〉 =
(|ξk

2 〉, |ξk
2 〉, |ξ̃k

1 〉, |ξ̃k
2 〉)T , k = 1, . . . , N, (3.70b)

|ηk
j 〉 = [|ηk

j1〉, . . . , |ηk
jN 〉]T , |ξk

j 〉 = [|ξk
j1〉, . . . , |ξk

jN 〉]T , j = 1, 2, (3.70c)

ηk
js = −iq−

nk∑
mj=s

mj−s∑
l=0

(−1)l+1

(νk∗
j )l+1

rk∗
j,mj

fk∗
j,mj−s−l(x, t), j = 1, 2; (3.70d)

η̃k
js = iq−

nk∑
mj=s

mj−s∑
l=0

(−1)s+l

(νk∗
j )l+1

rk∗
j,mj

fk∗
j,mj−s−l(x, t), j = 1, 2; (3.70e)

ξk
js =

nk∑
mj=s

rk
j,mj

fk
j,mj−s(x, t), ξ̃k

js = −
nk∑

mj=s

(−1)s+1rk
j,mj

fk
j,mj−s(x, t), j = 1, 2; (3.70f)

〈Y0| = [〈Y 0
1 |, 〈Y 0

2 |, . . . , 〈Y 0
N |], 〈Y 0

k | = [1, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0]1×4N , (3.70g)

Ω =

⎛
⎜⎜⎜⎝

[ω11] [ω12] · · · [ω1N ]
[ω21] [ω22] · · · [ω2N ]

...
...

. . .
...

[ωN1] [ωN2] · · · [ωNN ]

⎞
⎟⎟⎟⎠ , [ωkh]4nk×4nh

=

⎛
⎜⎝

ω11
kh · · · ω14

kh
...

. . .
...

ω41
kh · · · ω44

kh

⎞
⎟⎠ , (3.70h)

ωjp
kh = [ωjp

kh]sq = −
nk∑

mj=s

mj−s∑
l=0

(
q + l − 1

l

) (−1)lrk∗
j,mj

fk∗
j,mj−s−l

(νk∗
j − νk

p )l+q
, j, p = 1, 2; (3.70i)
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Fig. 5. One-soliton with one second-order pole, here taking parameters r11 = 1, r12 = 2,r21 = 4, r22 = 3, q0 = 1, z0 = 2e
πi
4 .

a The three-dimensional graph. b The contour of the wave

ωj,p+2
kh = [ωj,p+2

kh ]sq = −
nk∑

mj=s

mj−s∑
l=0

(
q + l − 1

l

) (−1)lrk∗
j,mj

fk∗
j,mj−s−l

(νk∗
j + νk

p )l+q
, j, p = 1, 2; (3.70j)

ωj+2,p
kh = [ωj+2,p]sq =

nk∑
mj=s

mj−s∑
l=0

(−1)s+1

(
q + l − 1

l

) (−1)lrk∗
j,mj

fk∗
j,mj−s−l

(νk∗
j − νk

p )l+q
, j, p = 1, 2; (3.70k)

ωj+2,p+2
kh = [ωj+2,p+2]sq =

nk∑
mj=s

mj−s∑
l=0

(−1)s+1

(
q + l − 1

l

) (−1)lrk∗
j,mj

fk∗
j,mj−s−l

(νk∗
j + νk

p )l+q
, j, p = 1, 2; (3.70l)

Iσ =

⎛
⎜⎝

Iσ1

...
IσN

⎞
⎟⎠ , Iσk

=

⎛
⎜⎜⎝

I
I

−I
−I

⎞
⎟⎟⎠

4nk×4nk

, k = 1, . . . , N. (3.70m)

We then give the figures of one-soliton solution with one second-order pole (Fig. 5).
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