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1. Introduction

The inverse scattering transform method plays a significant role during the discovery process of the exact
solutions of completely integrable systems [1,2]. As a new version of inverse scattering transform method,
the Riemann-Hilbert (RH) approach has become the preferred research technique to the researchers in
investigating the soliton solutions and the long-time asymptotics of integrable systems in recent years
[3,4]. More recently, the RH approach has been widely used to investigate the integrable systems with
nonzero boundary [5-10]. The high-order soliton solutions which have the same velocity and locate at the
same position also have been studied [11-13]. The general method to obtain the high-order solitons with
the classical inverse scattering transform (IST) method involves some complicated calculation, especially
for the case of multiple high-order poles [14-16]. In this case, it is effective to construct high-order pole
soliton solutions of integrable systems by Laurent expansion to the RH problem [16-18].
It is well-known that the nonlinear Schrédinger (NLS) equation [19,20]

iqt + qox +20q)?¢ =0 (1.1)

is one of the most important integrable systems, which plays an important role and has applications
in a wide variety of fields. Besides the NLS equation (1.1), derivative NLS (DNLS) equations were also
introduced to investigate the effects of high-order perturbations [21-23]. Among them, there are three
derivative NLS equations [23], the first one is Kaup—Newell equation [24]

1t + Quz + Z(|Q|2)x =0. (12)
The second type is the Chen—Lee-Liu equation [25]
The third type is the Gerdjikov—Ivanov (GI) equation which takes the form [26]
. DU
4t + Qzx — Zq2qz + ing 2 = 07 (14)

where the asterisk * means the complex conjugation. The DNLS equations are regarded as models in
a wide variety of fields such as weakly nonlinear dispersive water waves, nonlinear optical fibers, quan-
tum field theory and plasmas [27-30]. In plasma physics, the GI equation (1.4) is a model for Alfvén
waves propagating parallel to the ambient magnetic field, where ¢ being the transverse magnetic field
perturbation and x and ¢ being space and time coordinates, respectively [31,32]. The GI equation has
been studied through many methods. For instance, the Darboux transformation [33], the nonlinearization
[34,35], the similarity reduction, the bifurcation theory and others [36,37]. Especially, RH method is used
to construct N-soliton of the GI equation with zero boundary [38]. Recently, we used the RH method to
construct simple pole solutions of the GI equation with nonzero boundary conditions [39].

In this article, we further investigate the inverse scattering transform and high-order solutions of GI
equation (1.4) with zero boundary condition

q(z,t) = 0, x— too, (1.5)

and the following nonzero boundary conditions

3

q(x,t) ~ qre?

where |g+| = go > 0, and ¢4 are independent of xz,¢. The formula of multiple soliton solutions of the GI
equation is obtained, which correspond to multiple high-order poles of the RH problem.

This paper is organized as follows. In Sect. 2, we construct the RH problem of GI equation (1.4) with
zero boundary condition and display the relationship between the solutions of the RH problem and GI
equation, then we derive the formula of single high-order solutions and multiple high-order solutions of GI
equation. In Sect. 3, by the same method, we give the one single high-order soliton solution and multiple

.4 .2
WoltihT g 400, (1.6)
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high-order soliton solutions of GI equation (1.4) with nonzero boundary condition. We give the patterns
for both zero and nonzero boundary conditions.
2. IST with zero boundary and high-order pole

2.1. Spectral analysis

2.1.1. Eigenfunctions and scattering matrix. It is well-known that the GI equation (1.4) admits the Lax
pair [33]

Ve = X9, e =TY, (2.1)
where
X = —ik’03 + kQ — %QQUS, (2.2)
T = “9iktos + 2K°Q — i Q%05 — KQuos + 5(Q:Q — QQx) + 1Q'as, (23)
and

=3 %) a=(0.8) (2.4

With zero boundary (1.5), asymptotic spectra problem of the Lax pair (2.1) becomes
Yo = X9, ¢ =T49, (25)
where
X1 = —ik?o3, Ty = —2ik’0s. (2.6)

We define the Jost eigenfunctions ¢ (z,t, k) as the simultaneous solutions of both parts of the Lax pair,
so that

o(x,t, k) = (x,t, k)ed®)os (2.7)
where 0(k) = k?(x + 2k*t), then
dx(z,t, k) = I, x— too. (2.8)
Meanwhile, ¢4 acquire the equivalent Lax pair
bo(x,t, k) +ik?[o3, ¢(x, 1, k)] = AXid(z,t, k); (2.9a)
bi(z,t, k) + 2ik o3, d(z,t, k)] = ATy (w0, t, k), (2.9b)

where AXi =X - Xi and ATj: =T-— Ti.
Since 14 (z,t, k) are two fundamental matrix solutions, there exists a constant matrix S(k) such that

Vy(x,t, k) =v_(x,t,k)S(k), (2.10)

where S(k) = (si;(k))2x2 is referred to the scattering matrix and its entries as the scattering coefficients.
It follows from (2.10) that s;; has the Wronskian representation:

si(k) = Wr(i 1,9 2),  s12(k) = Wr(¥y 2,9 2), (2.11a)
so1(k) = Wr(¢—1,¥4.1),  s22(k) = Wr(¢— 1,4 2). (2.11b)
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2.1.2. Analyticity. As a result, the Volterra integral equations are

x

G (.t k) =T+ / e ETNINX L gy (y, 8, k)™ TRy, (2.12)
+oo

We define D, D™ and ¥ as

DT :={k € C: Reklmk > 0}, D :={k € C:Reklmk <0}, ¥ :=RUiR. (2.13)
Proposition 1. Suppose that q(x,t) € L'(R) and ¢4 j(x,t, k) denotes the jth column of ¢4 (x,t, k), then
o+ (x,t, k) have the following properties:

e ¢_ 1,042 and seo are analytic in D and continuous in DT U .
® ¢, 1, ¢_ 2 and s11 are analytic in D~ and continuous in D~ U X.
e S15 and So1 are continuous on .

As usual, the reflection coefficients r(k) are defined as

812(]1') 321(k)
Sgg(k) ’ Sll(lﬂ) ’

r(k) = 7(k) = kex. (2.14)

2.1.3. Symmetries.

Proposition 2. The Jost solution, scattering matriz and reflection coefficients satisfy the following reduc-
tion conditions

e The first symmetry reduction
dr(x,t k) =02’ (x,t,k)o2,  S(k) =025(k") 02, r(k)=—7(kE")", (2.15)
e The second symmetry reduction

ox(z,t k) = o1 (x,t,—k")or, S(k)=o015(—k") 01, r(k)=7(—k")", (2.16)

01—<(1)é>, 02—<? _OZ> (2.17)

2.1.4. Asymptotic behaviors. To solve the RH problem in the next section, it is necessary to discuss the
asymptotic behaviors of the modified Jost solutions and scattering matrix as k¥ — oo by the standard
Wentzel-Kramers-Brillouin (WKB) expansions.

where

Proposition 3. The asymptotic behaviors for the modified Jost solutions and scattering matrixz are given
as

bx(z,t k) =1~ iagg +ok™Y), Sk)=T+ok™"), k—oo (2.18)

Furthermore, solutions of the GI equation will be constructed by

gl 1) = lim 2i(ko)re. (2.19)
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2.2. Riemann-Hilbert problem

As we all know, the equation (2.10) is the beginning of the formulation of the inverse problem. We
always regard it as a relation between eigenfunctions analytic in DT and those analytic in D~. Thus, it
is necessary for us to introduce the following RH problem.

Proposition 4. Define the sectionally meromorphic matriz

M~ = &¢_72 ,as k€ D™,
M(x,t,k) = { 511 p (2.20)
Mt ={¢_1 =t2) askeD".
522
Then a multiplicative matriz RH problem is proposed:
o Analyticity: M(x,t, k) is analytic in C\ X.
e Jump condition
M~ (z,t,k) = M (2, t,k)(I — G(z,t,k)), ke, (2.21)

where

Gz, t, k) = (_Z@Z(r]‘é)k) 62ieg(k) ) . (2.22)

o Asymptotic behaviors
Mz, t,k) ~T+0(k™), k— oo, (2.23)
Moreover, new solutions of the GI equation can be reconstructed by M (xz,t, k) as

q(z,t) = kli_)ngo 2i(kM)12. (2.24)

2.3. Single high-order pole solutions

We assume sao(k) have high-order poles {+k; : Rek; > 0}, from the symmetries (2.15) and (2.16),

i=1
we know that {+k} : Imk? < 0}}_, are high-order poles of sy (k). So s92(k) can be expanded as:
Sgg(k) = (kJQ - k%)nl (/{52 - ]{;g)n2 ce (kﬁQ - kN)nNSO(k), (2.25)

where so(k) # 0 for all k € DT. When s22(k) only has N simple zeros, the RHP can be solved straight-
forward by the residue conditions, and the formula of Nth-order soliton solutions of GI equation are
obtained through (2.24). However, as s22(k) has multiple high-order zero points, the residue conditions
are not enough, and the coefficients related to much higher negative power of k + k; and k + k should
be considered. For convenience, we will consider the simplest case at first where s22(k) has only one
higher-order zero point.

Let kg € DT be the Nth-order pole, from the symmetries (2.15) and (2.16) it is obvious that —kg € D
also is the Nth-order pole of s22(k). Then £k are the Nth-order poles of s11(k). The discrete spectrum
is the set

{£ko, kg }, (2.26)

which can be seen in Fig. 1.
Let

saa(k) = (K = k)so(k), (2.27)
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Imk

—kg - * ko

Rek

—kg - ok

Fic. 1. Distribution of the the discrete spectrum and the contours for the RH problem on complex k-plane

in which so(k) # 0 in D*. According to the Laurent series expansion in poles, r(k) and r*(k*) can be,
respectively, expanded as

N N (1)

=7 i — ks 2.2
r( )+ mz::l = /fo —, in ko;  7(k)=To(k) + mz::l o+ o)™ in — ko; (2.28a)

N N
* * * * * ~% * (_1)m+1’r‘:n . «

' = S in — k(2.2

(k%) )+ 2:1 k_ k* in kg; (k7)) =75k )+mX::1 e k) in — kg;(2.28b)
where 7, are defined by

— 1 gN—m [(k’ i )N (k:)] —-1.9 N (2.29)

rm_kl_{gg(]\] m)l OkN-m o) k)], m=12...,N, .

and ro(k) and 7o(k) are analytic for all & € DT. The definition of M(x,t,k) yields that k = £k are
Nth-order poles of Mo, while k = +£k§ are Nth-order poles of M;j;. According to the normalization
condition sated in proposition 5, one can set

My (z,t, k) = 1 +Z( & (xk? + (ff"];ot))) (2.30a)
N Gy(z,t)  Ly(x,t)
Mys(z,t,k) = ; ((k St O ko)s), (2.30b)

where Fy(z,t), Hs(x,t), Gs(x,t), Ls(x,t)(s = 1,2,...,N) are unknown functions which need to be
determined. Once these functions are solved, the solution M(x,t, k) of RHP will be obtained and the
solutions q(z,t) of the GI equation will be obtained from (2.24).
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Now we are in position to solve Fy(x,t), Hq(x,t), Gs(x,t) and Ls(z,t)(s =1,2,..., N). According to
Taylor series expansion, one has

—+oo —+oo
e 20(k) — z,t)(k — ko)’ e 2i0(k) — D) i, t) (k + ko)’ 2.31a
fl( ) )( O)a ( )fl( ) )( O)a ( )
1=0 1=0
) +o0 ] +oo
200 =N ) (k- k), e =N (D) () (ke + K (2.31b)
1=0 1=0

+oo
M11 x t, k‘ Z,ul x, t ]41 k‘o) R Mll(l‘,t,k') = Z(—l)lul(x,t)(k—Fko)l, (2.31C)

1=0

—+oo
Mio(z,t, k) ZQ 2, ) (k= kg, My, t,k) =Y (=) t)(k+k)',  (2.31d)

1=0

where
filz,t) = lim lile*%}g("’”“k%)' (2.32a)
e k—ko [! Ok! ' ’
t li Lot M t, k t li Lo M t k 2.32b
ple:t) =l g Mo bR, Gle,t) =l 5 ag Ma(e. £ k). (2.325)
When k € D, we have the expansions in k = kg
= 122 o
M (k) = ¢ 11 = Zm(x,t)(k —ko)',  Mia(k) = ;—7 = e 2r(k)p- 11+ ¢ 12. (2.33)
1=0

comparing the coefficients of (k — ko) ~° with (2.30b), we can get

N j—s

t) = Zerfj,s,l(x,t)m(x,t). (2.34)

Jj=s 1=0
Similarly, from the expansions in k = —ky, we can get that

N j—s

= (0 fi (@ s, t). (2.35)

Jj=s1=0

With the same method, when k € D™, we can obtain that

N j—s N j—s
=3 it (@)l t), =N 0T (@ )G, ). (2.36)
Jj=s1=0 Jj=s1=0

Actually, py(z,t) and ((x,t) can also be expressed by Fs(z,t), Hs(x,t), Gs(x,t) and Lg(z,t). Recalling
the definitions of (;(x,t) and p;(x,t) given by (2.32b) and substituting (2.30) into them, we can obtain

N
s+1—1Y\ [(-1)'Gs(z,t) (—1)'Ly(z,t)
Gz, t) = ( > - + 2 , 1=0,1,2,..., (2.37)
; : { (kg — ko)t (kg + ko)tts }
N
Fs(x,t) H,(z,t)
plet) =3 w7 (2.38)
S s+i-1 {(*UlFs(w,t) i (fl)lHS(a;t)} 1=19.3
= l (ko—Fkg)s+I (ko+kg) "+ [ =1,2,0,...
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Using (2.36) and (2.3), we obtain the system

N j—s N
_ P + l - 1 * Pk (—1)le(.’177t) (_1)le(x7t)
Fs($7t) = Jgs - [;1 ( l ) Tj fjfsfl { (ké — ko)l+p + (kE'i i ko)l+p }a (2.39&)
N j—s N
_ st (PEI-TY L (—1)'Gp(z, 1) (—l)le(m,t)}
e = Jz::s 1=0 ;;( ! ( ! ) ifia { (kg — ko)t+P - (kg + ko)tte J (2:35b)
N N j—s N
_ p+i-1 (=D)'Fy(a,t) | (=1)'Hp(z,1)
Go(z,t) ;rjfgﬁ;l_();( / >rjfj o l{ (o — )7 + (k0+k%)l+p } (2.39¢)
N
Lo(a,t) = (1) i fi s (2.39d)
Jj=s
N j—s N
sy1 (PHI=1Y o (=)' Fp(z,t) | (=1)'Hy(,t)
“rjz::s lzopz::l(_l) + < I ) ijjfsfl { (ko — k‘S)H'P + ko —l—k‘S)H_p }a
Let us introduce
) = (1, o)’ me = erfj s(@,1), (2.40)
N
1) = (s i)™ e =3 (=1)" ey fia(a,t), (2.41)
Jj=s
|F) = (F\, Fy,...,FN)T,  |H) = (Hy,Ho,...,Hyn)", (2.42)
|G> = (G17G2a .- "GN>T’ |L> = (L17L2a .- LN)Ta (2-43)
N j—s L% £
_ _ p+1—1\ (D)'rifi (@)
M = [Qusplvxn = [— ;; ( ) (kg _Jko)lﬂ? ]NXN’ (2.44)
N j—s Lok £k
o o p+l—1 ( )’F '—sfl(a%t)
Qo = [Q2splNxn = [* ; 2 < ) > (k*]+]k0)l+p ]NxN’ (2.45)
N j—s SH1+1,.% px
_ _ pHl—1\ (1)t (2,)
QS - [Q?),sp]NxN = {; 2 ( I > (k(*)‘ ,jko)ler i|N><N7 (2.46)
j—s sHl41 5 px
_ o p-l—l—l ( ) f q—l(w7t>
Qy = [94,sp]N><N = []2 2 ( I > (ko T ko)l+p :|N><N’ (2.47)

where the superscript 7 denotes the transposed matrix. Thus, the linear system (2.39) can be rewritten
as
I|F) + 0|H) — |G) — Qp|L) =
OF) + I|H) — D|G) — |L) =
0 ) + 511) 116} + 012) —
Q3|F) + Q31 H) - 01G) — IL) = —i)
Through direct calculations, (|F), |[H))” and (|G),|L))T are explicitly solved as
(IF), [H)T = QL +2*Q)~ ) (In), =), (2.49)

(1G), 1L)" = (I + ")) (Im), )", (2.50)

(2.48)
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where

Ql Qg Inxn
Q= I, = . 2.51
<Q3 Q4) ’ ( _IN><N> (2:51)

Substituting (|F),|H))T and (|G),|L))T into the expansions of Mi(z,t, k) and Mya(z,t, k) given by
(2.30), since it is well known that for matrix A,,xn, Bnxm € K (K is a field of numbers) det(l,, + AB) =
det(l,, + BA) (I, and I,, are m and n dimension identity matrix, respectively), we get that

Mui(w,t,k) =1+ (Y, (V) |1H)"

= det (1+ (Y, (Y (| F), [H))T)
= det (1+ (Y1, (7))L, + 922~ (), ~1)") -
= det (I + (|n), =|7) " (Y], (Y)Q(Io + ") ")
_ det (1, + 0 Q+(77>7 )" (Y, (Y DR)
det (Ia—i— ) ’

where

1 1 1 5 ! 1 L
<Y(k)|:(kj_k‘a‘,(k_kS)Q,...,(kj_k_S)N)v <Y(k)|:(k—&—kS’(k+k8)2"”’(k+k8)N

). (2.53)
In the same way, we get that

det (I + 909+ (In), — 1) ((V* (k). (7" (k)

Mz = det (I, + Q*Q)

~1. (2.54)

Theorem 1. With the rapidly decaying initial condition (1.5), the Nth order soliton of GI equation is

[det (1 + 250+ (), 1) (%61, %)
qz,t) =2 det (I, + 00 -1, (2.55)

where
(Yol = (1,0,...,0)1xn- (2.56)
Proof. From the expansion of My (x,t, k), it follows that
q(z,t) = klii& 2ikMio(x,t, k)
= Tim 2ik((Y* (k") (V2 (6)]) (1G), 1£) "
= lim 20k (Y ()] (7 (6)) (I +2°2) ™ (In), =)
= 2i((Yol, (Yol) (I + Q) " (In), 1)) "

. [aet (1 + @004 ()~ (0], (va)
— 2 det (I, +Q*Q) !
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2.4. Multiple high-order pole solutions

Now we will study the general case that sso(k) has N high-order zero points ki, ka,....kx, ki € DT for
i=1,2,...,N, and their powers are ni, ns,...,ny, respectively. Let 7;(k) be r(k)’s Laurent series in
k = £k;, like the case of one high-order pole discussed above, we can obtain

n;j n;j *

— ijmj kPR % * Tj,"lj
ri(k) =rjo(k) + 21 W» T (k") = Tj,o(k )+ mZ:1 ma (2.57)
] (DTt ) (=Lt
ri(k) =7;0(k) + ——= 2 (k") =7 (k) + —*J, (2.58)
where
1 omi i "
iy = S B [(k = kj)"r(k)],

and r;o(k) ( =1,...,N) is analytic for all k € D*.
By the similar method in above, the multiple solitons of the GI equation are obtained as follows.

Theorem 2. With the rapidly decaying initial condition (1.5), if sa2(k) has N distinct high-order poles,
then the multiple solitons of GI equation have the same form as (2.55)

det (Ia +O0+ |77><Y0|>

t) =2 —1 2.59
ala.t) Z{ det (I, + Q*Q) } s
where
m) = (), n2)s s )T [0g) = (05,05 M52+ Mjomys —T0315 =702 -+ 5 —Tljoms (2.60a)
nj j
il = Z Tj,mjfmjfl(xvt)a Mg = Z (_1)l+1rj7mjfmj7l(x7t)7 (2.60b)
mj:l mj:l
Yol = [V, (2], ..., (YRl (Y21 = [V L0, (V2 =[1,0,...,001xn,, (2.60c)
[wn] [wlz] [wlN]
[wa1] [waa] -+ [wan] [wl] [WQ‘]
Q = . . . ) Wi n; n; — Jl 77’j><”l Jl njxnl) 9 2'60d
: : L : [ ]1]2 jX2n; ([w?z]njxnz w;'ll]anm ( )
[wn1] [wnz] -+ [wiw]

g My

q+8 -1 ( l)SjT;,m,- ;,m-—p—s,-
leq Z Z ( ! > (k; —Jkl)sjj’q J? (2606)

mj=p s;=0

n; mj—p ‘ —].)Sj?"gf *
2 q+s;— 1 ( Jym;J jym;—p—s;
2 = — , 2.60f
Wi == 2 2 () (& + ) s (2000
ms= Sj—

nj _ 1)p+sj+1 * *
3 . q+ SJ 1 ( j mjdj,m;—p—s;
Wil pg = Z Z < > (k;‘ k; )JSJ +q : -, (2.60g)

m;=p s;=0

4 " qg+s;—1 ( 1)p+s]+1 ; v ;m p—s
: = J L% R I R j, 2.60h
Wi, pq Z Z ( ) (k;‘ _i_k.l)sj-i-q ( )

m;j=p s;=0
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(b)
(a) 10

-10

-10 -5 0 5 10
X
F1G. 2. One-soliton with one second-order pole, here taking parameters r; = 1, ro = 2, kg = e%, ki = e~ 1. a The
three-dimensional graph. b The contour of the wave
In1 Xny
_I’ﬂl Xniy
I, = . (2.601)

I’I’LN XNnN

_IannN

We then give the figure of one-soliton solution with one second-order pole (Fig. 2).

3. IST with nonzero boundary and high-order poles
3.1. Riemann surface and uniformization variable

To make convenience for the later calculation, we handle the Lax pair (2.1) and the boundary condition
(1.6) at the beginning. We make a gauge transformation
q— qe—%iqét-i-iqu’

3, 4, 1.2
¢ — e(—zlqot+§1‘10w)03¢_

The GI equation (1.4) then becomes

i+ Gre + 20030 — 19°6; — 434°¢" + 5070 + 5900 =0, (3.1)
with corresponding boundary
linrzl q(z,t) = qu, (3.2)

where |q+| = qo.
The GI equation (3.1) is the compatibility condition of the Lax pair
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where
X:_Zk203+%(‘q|2_q8)03+k627 Q: <_Oq* g) )

T = —2ikos + (ik|qf* — igdlal* + lal* + Ziqé)og + %(Qw@ - QQ.)
+2k3Q — ikQ.03 — kg2 Q.
Under the boundary (3.2), asymptotic spectral problem of the Lax pair (3.3) becomes
o = X190, ¢ =Tso, (3.4)

where

Xy = —ik?o3 + kQx, Ty = (2k* —¢2) Xz, (3.5)

0
Qs = <_ ¢t qat > :
The eigenvalues of the matrix X4 are +ik\, where A\ = k? + ¢3. Since the eigenvalues are doubly
branched, we introduce the two-sheeted Riemann surface defined by
A=k + g, (3.6)
then A\(k) is single-valued on this surface. The branch points are k = +igg. Letting

and

k+igo = e, k—igy=ree'®,
we can get two single-valued analytic functions on the Riemann surface

Ak) =

(T1T2)1/2€i(91+02)/2’ OnSl,
{ (3.7)

_(quﬂz)I/Qez‘(91-§—62)/27 on SQ,

where —7/2 < §; < 3/2m for j =1,2.

Gluing the two copies of the complex plane S; and Sy along the segment [—iqo, iqo], we then obtain
the Riemann surface. Along the real k axis, we have A\(k) = +sign(k)/k? + g3, where the “+” applies
on 57 and S5 of the Riemann surface, respectively, and where the square root sign denotes the principal
branch of the real-valued square root function.

Next, we take a uniformization variable

z=k+ A, (3.8)
then we obtain two single-valued functions
1 2 1 2
k() =50, M@ =36+D). (3.9)

This implies that we can discuss the scattering problem on a standard z-plane instead of the two-sheeted
Riemann surface by the inverse mapping. We define DT, D~ and ¥ on z-plane as

Y =RUIR\{0}, D" ={z:Rezlmz >0}, D~ ={z:Rezlmz < 0}.
the two domains are shown in Fig. 3.
From these discussions, we can derive that
oad (el )2~ 268(Re2)” — (1m2)?)

Im(k(z)A(2)) = Im—— 4zl

= 4|Z|4(|z|4 + Q§)Im22 = 2[z|4 (|Z|4 + qé‘)RezImz,
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FiG. 3. Complex z-plane consists of the region D1 (the violet regions) and the D~ (the white regions)

which implies that

=0,asz€X
Im(k(z)/\(z)){ >0,asz € DT
<0,asz € D~

3.2. Spectral analysis

153

(3.10)

3.2.1. Eigenfunctions and scattering matrix. For eigenvalue +i\, we can write the asymptotic eigenvector

matrix as

1 -l i
Ya=1 i 12 :I_;UBQﬂ:»

z

so that X4+ and Ty can be diagonalized by Y

Xi =VYi(—ikdoz)YL', Ty =Y (—(2k* — )ik os) Yt

Direct computation shows that

Q(Z) N
det(Yi) =1+ ; =7,

and

gl 1
Substituting (3.12) into (3.4), we immediately obtain
(Vi 9)e = —ikAoa(Yi '), (Yo 9)r = —(2k% — g§)ikAos (Y '),

11 1 i .
Yil = — <“1jt z ) = ;(I+;O’3Qﬂ:)7 Z# Zth().

z

z 7& :l:qua

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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from which we can derive the solution of the asymptotic spectral problem (3.4)

Yy et=)os, z # *iqo,

¥(@,t,2) = { I+ (z —3¢3t)Y+(2), z = +iqo, (3.16)

where
O(z,t,2) = —k(2)\(2)[z + (2K*(2) — qg)t].

For convenience, we will omit « and ¢ dependence in 0(x,t, z) henceforth.
We define the Jost eigenfunctions ¢ (z,t, z) as the simultaneous solutions of both parts of the Lax
pair so that

by =Y L o(1), 1z — +oo. (3.17)
We introduce modified eigenfunctions by factorizing the asymptotic exponential oscillations
I e QLR (3.18)

then we have
P ~ Yo, T — Foo.

Meanwhile, p1 acquire the equivalent Lax pair

(Vi ) — RN s, 03] = V' AX s pia, (3.19)

(Vi pw)e — ik A2k — q8)[Yi 'y, 03] = Yo ' AT pu, (3.20)

where AXL = X — X4 and AT =T — T4. These two equations can be written in full derivative form
d(e™ DY py) = e PO YN (A X edr + AT dt)ps), (3.21)

which leads to the Volterra integral equations

Yo+ fj:oo YieiikA(ziy)&s [Yi_lAXi(y7 t),ui(ya i, Z)]dy, z 7& +iqo,
:uzl:(xﬂtvz) = z . (322)
Yy + fioo[f + (-9 X+ (2)]AXL(y, ) ps(y,t,2)dy, 2z = +iqo,

where we define e®? A := e®? Ae=*? | for a matrix A.
Since trX = trT = 0 in (3.3), then by using Abel formula, we have

(det ¢), = (det gu)s = 0, det(ps) = det(pre ")) = det(¢s).
So that (det p4), = (det 4 )¢ = 0, which means det(p+) is independent with z, t. Furthermore, we know
that po is invertible from

det p4 = lilil det(us) =detYy = #0, z,teR, z€X,. (3.23)
Tr— 00
Since ¢4 are two fundamental matrix solutions of the linear Lax pair (3.3), there exists a relation
between ¢, and ¢_
Gz t,2) = d_(2,t,2)S(2), x,teR, ze3, (3.24)

where S(z) is called scattering matrix and (3.23) implies that det S(z) = 1. Letting S(z) = (s;;), for the
individual columns

G141 =811¢0_1+821¢_2, Op2=5120_1+ 5220 . (3.25)

By using (3.24), we obtain
s11(2) = V‘w s12(2) = W (3.26)
s21(2) = M7 s22(z) = M (3.27)

v v
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3.2.2. Analyticity. Here we directly state the analyticity of eigenfunctions p4 and scattering data s11, soa,
the detail proofs of them were given in our paper [39].

Proposition 5. Suppose q(x,t) — qr € L'(R¥), then the Volterra integral equation (3.22) has unique
solutions p(x,t,2) defined by (3.18) in Xy := X\ {£iqo}. Moreover, the columns p_ 1 and py 2 can be
analytically extended to DT and continuously extended to Dt U, while the columns py 1 and p_ o can
be analytically extended to D~ and continuously extended to D~ UX,, where py j(x,t,2)(j = 1,2) denote
the j-th column of p.

Proposition 6. Suppose (1 + |z|)(q(z,t) — q+) € L*(R¥), then the Volterra integral equation (3.22) has
unique solutions px(x,t, z) defined by (3.18) in X. Besides, the columns pi— 1 and pi4 2 can be analytically
extended to DV and continuously extended to DY UX, while the columns pi4 1 and p— o can be analytically
extended to D™ and continuously extended to D™ U X.

Lemma 1. Consider an n-dimensional first-order homogeneous linear ordinary differential equation, dy(z)/dx =
A(x)y(x), on an interval D € R, where A(x) denotes a complex square matriz of order n. Let ® be a
matriz-valued solution of this equation. If the trace trA(x) is a continuous function, then one has

det () = det P(xg) exp {/ trA({)df}, x,zo € D. (3.28)

Zo

Proposition 7. The Jost solutions ®(x,t,z) are the simultaneous solutions of both parts of the Lax pair
(3.3).

Proposition 8. Suppose q(x,t) — q+ € LY(RT). Then s11 can be analytically extended to D~ and contin-
uously extended to D~ U Xy, while so can be analytically extended to DT and continuously extended to
Dt UXy. Moreover, s12 and sg1 are continuous in Xg.

Note that we cannot exclude the possible existence of zeros for s11(z) and sq22(z) along Xg. To solve
the RH problem, we restrict our consideration to potentials without spectral singularities, i.e., s11(z) # 0,
s22(z) # 0 for z € ¥. Besides, we assume that the scattering coefficients are continuous at the branch
points. The reflection coefficients which will be needed in the inverse problem are

F2) =B p(z) = 22, (3.29)
511 522
3.2.3. Symmetries. For the GI equation with nonzero boundary, we not only need to deal with the map
k — k™, but also need to pay attention to the sheets of the Riemann surface. We can see from the Riemann
surface that the transformation z +— z* implies (k, \) — (k*, \*) and 2 — —q2/z implies (z,\) — (k, —\).
Therefore, we would like to discuss the symmetries in the following way.

Proposition 9. The Jost solution, scattering matriz and reflection coefficients satisfy the following reduc-
tion conditions on z-plane
e The first symmetry reduction

Ox(x,t,2) = 020k (2, 8,27 )02,  S(2) = 025" (2%)o2, 1r(z) = —7"(2"), (3.30)
0 —i
where o9 = <z OZ
e The second symmetry reduction
d1(x,t,2) = o190} (x,t, —2")o1, S(z) = 018" (—z%)o1, r(z) =7 (—2%), (3.31)

where o1 = ((1) (1)> .



153 Page 16 of 25 Z. Zhang and E. Fan ZAMP

e The third symmetry reduction

i %
d)i(l’,t,Z) = _;(ﬁi(xatv_;)(j?)Q:t» (332)

56) = (030 1S D)@y, () = -5, (339

q* z

3.2.4. Asymptotic behaviors. To solve the RH problem in the next section, it is necessary to discuss
the asymptotic behaviors of the modified Jost solutions and scattering matrix as z — oo and z — 0 by
the standard Wentzel-Kramers—Brillouin (WKB) expansions.

Proposition 10. The asymptotic behaviors for the modified Jost solutions are given as

pa(z,t,z) =T+o0(z7h), 22— oo, (3.34)
pa(x,t,2) = —20’3Qi +o(1), =z-—0. (3.35)

From (3.34), we can get that
q(z,t) = lim izu(iu), (3.36)
Z—00

which will be used in the following. Inserting the above asymptotic behaviors for the modified Jost
eigenfunctions into the Wronskian representation (3.26) and (3.27), with a little calculations, we get the
asymptotic behaviors of the scattering matrix.

Proposition 11. The asymptotic behaviors of the scattering matrix are
S(z)=1+0(z""), z— o0, (3.37)
S(z) = diag((q];, Z—*) +0(2), 2—0. (3.38)
+ —

3.2.5. Distribution of spectrum. The discrete spectrum of the scattering problem is the set of all values
z € C\ %, for which eigenfunctions exist in L?(R). We would like to show that these values are the zeros
of s11(z) in D~ and those of s5(2) in DT.

We can show that the uniformization transformation (3.9) changes the segment [—iqo, igo] on k-plane
into the circle |z| = go on z-plane. We suppose that sy has one Nth-order zero zp in DT N {z € C :
Imz > 0,]z] > qo}, then symmetries (3.30)-(3.33) imply that

2 2

s22(%20) = 06 sy (2]) =06 511 (D) = 0 & spp(=2) = 0. (3.39)
20 20
Therefore, the discrete spectrum is the set
% %
Z= {iZo,izg,iO,ig}, (3.40)
20 )

which can be seen in Fig. 4.

3.3. Riemann—Hilbert Problem

As we all know, the equation (3.24) is the beginning of the formulation of the inverse problem. We
always regard it as a relation between eigenfunctions analytic in DT and those analytic in D~. Thus, it
is necessary for us to introduce the following RH problem.
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F1a. 4. Distribution of the the discrete spectrum and the contours for the RH problem on complex z-plane

Proposition 12. Define the sectionally meromorphic matriz

= hep

M- — (M+,1
M(z,t, 2z) = 511
M+ = (H—,1

Then a multiplicative matrix RH problem is proposed:
o Analyticity: M (z,t, z) is analytic in C\ X and has single poles.

e Jump condition

M~ (z,t,2) = MT(x,t,2)(I — G(z,t,2)),

where
G(z,t,2) = (

o Asymptotic behaviors

M(z,t,2) ~ I+ 0(="Y),

M(z,t, z) ~ —20’362_ +0(1), =z-—0.

From (3.36), we know that

q(z,t) = lim izM12),

3.4. Single high-order pole solutions

r(2)i(2) e%(z)) |

7672“977(2)

Z2— 00

Z — 00,

),aszED_,
2

),aszéD*.
2

z €,

153

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

Let 29 € DT be the Nth-order pole, from the symmetries (3.30)-(3.32) it is obvious that —z, :l:% e DT

also is the Nth-order pole of sg2(z). Then +z§ and j:g are the Nth-order poles of s11(z). The discrete
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spectrum is the set
{:I:zo, +2 ﬁ:qo ] } (3.47)
20

which can be seen in Fig. 4
2
Let v1 = 29, 19 = Z—g, then the discrete spectrum is {£vy, £, 5, +r5}. Let
s22(2) = (22 = )N (2* = 13)Vs0(2), (3.48)

in which sg(z) # 0 in DT. According to the Laurent series expansion in poles, 7(z) and r*(z*) can be,
respectively, expanded as

N
T’mj . .
rj(2) =ro;(2) + Z (_Jﬁv nz=v;, j=12 (3.49a)
m;=1 z Vj
~ N (_1)mj+1rj,m7’ . .
ri(2) = 7o,5(2) + Z W inz=-v;, j=12 (3.49b)
mj:1 J
* (% * * a T;vmj : * .
'f’j (Z ) = 7"0,]-(21 ) + Z m m z = V]-, ] = 1,27 (349C)
m7:1 J
N ( 1)mj+lr>¢5
* [ % ~% * J,mj . * .
ri(2") =75 ,;(2") + Z — " nz=-v, j=12 (3.49d)
mj=1 (Z + Vj)

where 7 ,,, are defined by

N—m;
(N 17’77,])'5322]\] m; [(Z_VJ)NTJ(Z)L

Tjm; = lim
Z‘PZIJ

m; =1,2,...,N. (3.50)

and 79 ;(z) and 7o ;(z) are analytic for all z € DT. The definition of M(z,t, k) yields that z = +v;
(j = 1,2) are Nth-order poles of Mjs, while z = v (j = 1,2) are Nth-order poles of M;;. According to
the normalization condition sated in Proposition 13 one can set

t)  Hjs(z,t)
My (z,t,2) = 1 ss (2 A 3.51
e +zz( n ) wst

j=1s=1

2 x,t)  Lj;s(x,t)
M t, —— 2,2 A .51b
12(%%2) q +ZZ<Z_VJ (Z+Vj)s), (3510)
j=1s=1
where F}  (z,t), Hj o(x,t), Gjs(x,t), Ljs(z,t)(s =1,2,...,N, j = 1,2) are unknown functions which
need to be determined. Once these functions are solved, the solution M (z,t,z) of RHP will be obtained
and the solutions ¢(z,t) of the GI equation will be obtained from (3.51).
Now we are in position to solve F} s(z,t), Hj s(x,t), G s(x,t) and L; s(z,t)(s =1,2,...,N, j = 1,2).
According to Taylor series expansion one has

+oo
20 ijl z,t)(z—vy), 2 =N (D) i ) (2 + ), (3.52a)
=0
e 210z Zf]l (. t)(z — ), e 20 = ST (1) (a0 (2 4 ) (3.52b)
=0
+oo
My (z,t,2) Zuﬂ z,t)(z — ), My(z,t,z) = Z(—l)luj,l(x,t)(z + ;) (3.52¢)

=0
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“+o0

Mis(x,t, 2) ZCJZ z,t)(z — V] DL Mis(x,t,z) = Z(—l)Hle,l(z,t)(z + V;)l, (3.52d)
1=0
where
: 1 8l 2i0(z
fralw,t) = Jim 7200, (3.53a)
li L o M li L0 — M 3.53b
pia@t) = lim mogMu (et z),  Galet) = S g 12(2, ¢, 2). (3.53b)
When z € DT, we have the expansions in z = v; (j =1,2)
+o00
My (2) =p—11 = Zﬂj,l(x,t)(z - Vj)l7 (3.54)
1=0
T, t, 2 i
Mis(z) = % =20 () g1 (x,t,2) + p1a(z,t, 2) (3.55)
22

comparing the coefficients of (z — ;) ~® with (3.51b), we can get

N mj—s

Gjs(z,t) = Z Z Tjmy Jim;—s—1(x, ) (2, t). (3.56)

m;=s =0

Similarly, from the expansions in z = —v; (j = 1,2), we can get that
ms;—s
Ljs(z,t) Z Y U i, fimy— st (@t pa (1), (3.57)

mj=s [=0

By the same method, when z € D™, we can obtain that

N mj—s
FJ}S(xvt) = Z T;‘(,mjf;f,mj787l(x7t)<j$l(m7t)’ (3.58)
mj=s [=0
N mj—s
Hjs(a,t)= ) (=) s Ly —s (@, DG (0, 8). (3.59)

Actually, p;(z,t) and (j;(x,t) (j = 1,2) can also be expressed by F} s(z, ) is(@,t), Gjs(x,t) and
Ljo(x,t) (j = 1,2). Recalling the definitions of (;;(x,t) and ﬂjﬁl(x,t) ( 1, ) given by (3.53b) and
substituting (3.51) into them, we can obtain

(-pr +1—1Y\ [ (=1)'Gps(,t) | (=1)'Lps(a,t)
Gal 1) = sy leq +pzlzl(5 ){ (z/;—ll)ﬁ's + (V;+Vp)f+s J1=0,1,..., (3.60a)

D,s t ps t _ .
L+ O { felegd 4 sl o

pi(@,t) = -1 . . (3.60b)
j Zp Y 1<s+ ){( D' Fpa(@t) | (“1)'Hpu( t)}7 =123,

W) T T )T
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Using (3.56)—(3.60), we obtain the system

Z. Zhang and E. Fan

ZAMP

N omy—s 1 I+1
Fjs(w,t) = —iq- Z Z (v) l+1 ijfj*mJ75 (@, 1)
m;=s =0 J
N mj—s 2 N
5D 3 55 9 91 CArill MW e XU SRR
mj=s =0 p=1gq=1 T Yj _Vp) 4 (Vj +Vp) e
(3.61a)
N mj—s (71)S+l
Hj(z,t) = iq- Z (vF)iH T;,mj f;,mj—s—l(xvt)
m;=s =0 J
+ i mrsZi( 1)s+ (q”1> e {(—1)1Gp,q($vt) (—1)1Lp,q($7t)}
mj=s =0 p=1gq=1 l S Lmj_s_l (VJ* _VP)lJrq (V; +Vp)l+q ’
(3.61b)
N
Gj,s(x’t) = Z Tj,THij,mj—S(m?t)
SRR ) Bpylo) (D))
q—|—l—1> —1)'F), q(x,t —1)'H, 4(x,t
+ S f,m —s— l{ 7* + ’ },
m;s =0 ;;( fma L, (Vj 7Vp)l+q (Vj+yp)l+q
N
LJ}S(J"J) Z ( 1)S+1TJ me] mJ—e(x t)
N mj—s 2 N
+1-1 (-1)'F, y(z,t)  (=1)'H, 4(z,1)
i 1)s+! (q >r47 i -—s—l{ X 4 Pq }7
(3.61d)

Let us define

N mj—s 1 1+1
|77J>:(77]17777]N) ? q Z I/* l+1 ]m]fj*m]—s l(xvt)a ]:172a
mj;=s =0 J
N mj—s 1 s+1
|7’J> = (77]'13 cee aan) ) 7735 - Zq Z l/* l+1 ] m; f;mj—s—l(z7t)a J = 132a
mj=s [=0 J
N
6) = &1 60T G = Y i fims(@,t), =1,
m;=s
~ N
|€]> ( Jlyeee ang)Tv 6]9 = Z (71)8Tj,mjfj,7nj—s(xvt)? ] - 1 2
m;=s
N mj;—s -1 1% *
q+l,1 ( )rjm j,m;—s—l .
Qjp [ij]sq - Z Z ( 1 ) (v —]1/ )qu ) Jp=12
mj=s [=0 J
N mj—s L% *
o q—+ -1 (_1) rj,mj jimj—s—l .
Qj,P+2 - [Qj,p+2]sq - Z ( l > (l/; + l/p)l+q ) J,P = 17277
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m;—s %

1%
(_1)s+1 (q + i — 1) (_1) rj,mj Jymy—s—l1

N
Qjrop = [Qj+2,p]sq = Z Jp=12

— I+ ’
mj;=s =0 (Vj* VP) a

Q [Q ] Z mj_s( 1)S+1 <q+l— 1> (_1)lr;’:mj ;.mj—s—l . 1.9
J+2,p+2 = PEj42,p+2]sq = - " ’ =12
mj=s 1=0 ! (Vj + VP)H_(I
|E,) = (Fpas-- s Fpn)t  |Hy) = (Hpa,...,Hyn)', p=1,2;
1Gp) = (Gpas-o ', GpN)y |Lp) = (Lpas-- s Lyn)T,  p=1,2.
Let
Qup - Quy
o= | (3.62)
Qg1 -+ Quaq
and
lon) = (I, [m2), ) i)™ lea) = (160), 162), 160), 1€2)"
|K1) = (|F1), |[Fo), | Hy), [Ho)) T, [Ks) = (IGh),|Go), [La), [L2)) T
Using the similar method with zero boundary condition, we have
|Ko) = = (I, + Q) Loy + (I, + Q) L, (3.63)
where
I
I
I, = 7 ,
-1 4N x4N
so that
7
Mya(z,t,2) = - (Y|K3)
_ 7£q_ Y= (L, + ) ay + (I, + Q7Q) Lan) (3.64)
i N det(Iy + Q*Q + |ag)(Y]) — det(I, + Q*Q + |1 )(Y]Q¥)
- det(I, + Q2*Q) ’
where
| = ( 1 1 1 1 1 1 1 1 )
T \z—v T )N 2 T =)V 2 ()N 2w’ (24 v2)N S ixan

Theorem 3. With the nonzero boundary condition (1.6), the Nth-order soliton of GI equation is

a(z,t) = g + z[ (3.65)

det(I, + Q*Q + |a2)(Yo|) — det(I, + Q*Q + |a1)(YO|Q*)}
det(I, + Q2*Q) 7

where

(Yo| = (1,0,...,0,1,0,...,0,1,0,...,0,1,0,...,0)1x4n. (3.66)
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3.5. Multiple high-order pole solutions

Now we will study the general case that sso(z) has N high-order zero points z1, za,...,2n, 2x € DT for

2
k=1,2,...,N, and their powers are ni, No,...,ny, respectively. Let l/{C = Zk, 1/£C = 3—2. Let rf(z) be
k

r(z)'s Laurent series in z = u (7 = 1,2), like the case of one high-order pole discussed above, we can
obtain

n k ng ko*
rf(z) = Tf’o(z) + Zk (zi]%, r;k(z*) =77o(2") + Zk W, (3.67)
m,=1 j m;=1
n _1\ym;+1,.k n mj+1,.kx
O =)+ 3 ) =+ 3 e ()
where
rF = lim ! o [(z — Vf)"’“r(z)],

Pk (g — my)! Ok

and 7% 4(2) (k=1,...,N) is analytic for all z € D¥.
By the similar method in above, the multiple solitons of the GI equation are obtained as follows.

Theorem 4. With the nonzero boundary condition (1.6), if sa2(2) has N distinct high-order poles, then
the multiple solitons of GI equation have the same form as (3.65)

det(ly + Q*Q + |ag) (Yo|) — det (I, + Q*Q + |aq ) (Yo |Q*)
t)=q- 3.69
a@,t) =g +i i) ’ (3.69)
where
T L - T
laa) = (lad), - lel) s o) = (Inh), [n5), 1ab), |35)) ", k=1,...,N, (3.70a)
T v T
lag) = (lad), .. les)) ", lab) = (165),1¢5), 1€1),1€5)) ", k=1,..., N, (3.70b)
|77;€> = [‘7];€1> |n;€N>]T7 |§;€> = H j1>7"'7‘ jkN>]T7 j: 1527 (370C)
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F1G. 5. One-soliton with one second-order pole, here taking parameters r11 = 1, r12 = 2,791 = 4,722 = 3,90 = 1, 20 = 2eT .
a The three-dimensional graph. b The contour of the wave

+2 +2 LN q+1-1 (— l)lr;“* ]k* I
s s m; m;—S— . _ . .
wk;f = [wklf Jsq = Z ( I ) 1 ,/k)ljrq . Jp=12; (3.705)
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mj— 1,.kx ke
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Win 7 = [wiraplsg = Z_: ( l LR G (3.70K)
m;=s 1=0 J D
) ng My _ _1)ITI_C* kx
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“kh = [wjt2.p+2]sq Z ( Ry . Jp=12; (3.701)
mj=s =0 ! (Vj + VP) ta
I, I ;
I, = . ) Iak_ . , k=1,... N. (370m)
Iy I

Ang X4dng

We then give the figures of one-soliton solution with one second-order pole (Fig. 5).
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